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Abstract

Land use and land cover (LULC) changes have always had profound impacts
on environmental sustainability and natural resources, especially in a city like
Tehran as one of the most densely populated metropolises in the Middle East.
The urban dynamics in Tehran was investigated in this study using remote
sensing data, including Landsat (TM, ETM?*, and OLI) and Sentinel-2 images
from 1991 to 2021 collected from Google Earth Engine and USGS platforms
before being pre-processed using geometric, radiometric, and atmospheric
corrections via the FLAASH algorithm. To identify the LULC patterns,
Normalized Difference Vegetation Index (NDVI) and Normalized Difference
Built-up Index (NDBI) were calculated, followed by unsupervised
classification using the K-means algorithm to delineate five primary land use
classes: built-up areas, agricultural lands, orchards, barren lands, and water
bodies. Subsequently, supervised classification methods, including Support
Vector Machine (SVM), Minimum Distance (MD), and Maximum Likelihood
Classifier (MLC), were evaluated to reveal the superior performance (an
overall accuracy of 91% and a Kappa coefficient of 0.89) of SVM. Change
detection using the post-classification comparison method revealed a 39.7%
increase in built-up areas (from 410.36 to 573.51 km?) but decreases of 69.3%
and 9% in agricultural and orchard lands, respectively. The expansion in built-
up areas, primarily towards western and southern stretches of Tehran, has led
to the conversion of fertile agricultural lands into urban and industrial uses,
posing such risks as intensified urban heat islands (projected to increase by 3.43
°C by 2050), diminished food security, and water and soil resource degradation.
These findings underscore the urgent need for sustainable urban policies,
including protection of the remaining agricultural lands, promotion of vertical
urban development, and integrated water resource management, to steer Tehran
towards environmental sustainability and provide a model for other developing
metropolises.
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Table 1 — Main land cover of study area
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Table 2- Land use/cover validation results in the study area using support vector machine algorithm
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Table 3- The results of error matrix for support vector machine algorithm in 2021
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Figure 2- The land use categories of Tehran during the periods under study
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Table 2- Land use Area changes from 1991 to 2021
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Figure 3- Variations in the area of land use categories over the study period
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