Document Type : Research Paper

Authors

Abstract

 
Soil as a part of biosphere plays an important role in food production and environmental sustainability. Environmental and soil pollution with heavy metals is one of the major problems in developing and industrial countries. Heavy metals contaminated soils are often the result of human activities such as industrial development, urbanization, use of sewage sludge, compost and fertilizers in agriculture. To remove heavy metals from contaminated soil several methods including physical, chemical and biological methods are used. Phytoremediation is a low cost and effective method of removing pollutants without negative impact on environment. Phytoextraction is part of phytoremediation that can remove heavy metals from soils by accumulating of them in the accumulator plants shoot. In recent years, due to low growth and biomass production of accumulator plants, some crops with high biomass such as woody, medicinal and aromatic plants, suggested as an alternative for the extraction of metals from the contaminated soils. In compare to other edible and woody crops, medicinal plants used for phytoextraction probably don’t have high potential for hyperaccumulation. However, because their final products (secondary metabolites) are free from heavy metals and their secondary metabolites are low cost, they can be used for phytoremediation of heavy metal contaminated soils. The present paper investigates the possibility cultivation of medicinal herbs including chamomile, basil, hemp, peppermint, hypericum, purslane, sage and lavender in soils contaminated with heavy metals and phytoremediation potential of them.

Keywords

  1. اسماعیل زاده بهابادی ص و شریفی م (1392) افزایش تولید متابولیت‌های ثانویه زیستی با استفاده از الیسیتورهای زیستی. مجله سلول و بافت. جلد4، شماره 2: 128-119.
  2. رحیمی، ط و رونقی، ع، م. 1391. اثر کاربری منابع مختلف روی بر غلظت کادمیم و برخی عناصر کم مصرف در گیاه اسفناج در یک خاک آهکی. علوم و فنون کشت‌های گلخانه ای. سال 3، شماره 10: 111-101.
  3. صدری، ز.، زرین کمر، ف و زینلی، ح. 1390. بررسی جذب و تجمع سرب در مراحل مختلف رشد و نمو بابونه آلمانی (Matricaria chamomilla L.). مجله زیست شناسی گیاهی، سال 3، شماره 9: 62-53.
  4. منصوری، ح و اسرار، ز. 1392. اثر ABA روی رنگدانه‌ها و دلتا-9 تتراهیدروکانابینول گیاه شاهدانه (Cannabis sativa L.) در مرحله گلدهی. مجله زیست شناسی ایران. جلد26، شماره1: 89-82.
  5. Amer, N., Chami, Z. A., Bitar, L. A., Mondelli, D., and Dumontet, S. 2013. Evaluation of Atriplex halimusMedicago lupulina and Portulaca oleracea for phytoremediation of Ni, Pb, and Zn. International Journal of Phytoremediation, 15(5), 498-512.
  6. Angelova, V. R., Grekov, D. F., Kisyov, V. K., and Ivanov, K. I. 2015. Potential of lavender (Lavandula vera L.) for phytoremediation of soils contaminated with heavy metals. International Journal of Biological, Biomolecular, Agricultural, Food and Biotechnological Engineering, 9 (5), 479-486.
  7. Angelova, V., Ivanov, K., and Ivanova, R. 2006. Heavy metal content in plants from family Lamiaceae cultivated in an industrially polluted region. Journal of Herbs, Spices & Medicinal Plants, 11(4), 37-46.
  8. Angelova, V., Ivanova, R., Delibaltova, V., & Ivanov, K. 2004. Bio-accumulation and distribution of heavy metals in fibre crops (flax, cotton and hemp). Industrial Crops and Products, 19(3), 197-205.
  9. Bagdat, R., and Eid, E. M. 2007. Phytoremediation behavior of some medicinal and aromatic plants to various pollutants. Journal Field Crops Central Research Institute (Ankara), 16, 1-10.
  10. Brown, S., Angle, J., Chaney, R., and Baker, A. 1995. Zinc and cadmium uptake by hyperaccumulator Thlaspi caerulescens grown in nutrient solution. Soil Science Society of America Journal, 59(1), 125-133.
  11. Chaiyarat, R., Suebsima, R., Putwattana, N., Kruatrachue, M., and Pokethitiyook, P. 2011. Effects of soil amendments on growth and metal uptake by Ocimum gratissimum grown in Cd/Zn-contaminated soil. Water, Air, & Soil Pollution, 214(1-4), 383-392.
  12. Citterio, S., Prato, N., Fumagalli, P., Aina, R., Massa, N., Santagostino, A., and Berta, G. 2005. The arbuscular mycorrhizal fungus Glomus mosseae induces growth and metal accumulation changes in Cannabis sativa L. Chemosphere, 59(1), 21-29.
  13. Deepa, R., Senthilkumar, P., Sivakumar, S., Duraisamy, P., and Subbhuraam, C. 2006. Copper availability and accumulation by Portulaca oleracea Linn. Stem cutting. Environmental Monitoring and Assessment, 116 (1-3), 185-195.
  14. Grejtovský, A., Markušová, K., and Nováková, L. 2008. Lead uptake by Matricaria chamomilla L. Plant, Soil and Environment, 54 (2):47-54.
  15. Gupta, A. K., Verma, S. K., Khan, K., & Verma, R. K. 2013. Phytoremediation Using Aromatic Plants: A Sustainable Approach for Remediation of Heavy Metals Polluted Sites. Environmental Science & Technology, 47(18), 10115-10116.
  16. Henry, J. R. 2000. Overview of the Phytoremediation of Lead and Mercury Overview of the phytoremediation of lead and mercury: Environmental Protection Agency
  17. Kale, R. A., Lokhande, V. H., and Ade, A.   B. 2015. Investigation of chromium phytoremediation and tolerance capacity of a weed, Portulaca oleracea L. in a hydroponic system. Water and Environment Journal, 29 (2): 236-242.
  18. Kováčik, J., and Bačkor, M. 2008. Oxidative status of Matricaria chamomilla plants related to cadmium and copper uptake. Ecotoxicology, 17(6), 471-479.
  19. Kováčik, J., Tomko, J., Bačkor, M., and Repčák, M. 2006. Matricaria chamomilla is not a hyperaccumulator, but tolerant to cadmium stress. Plant Growth Regulation, 50(2-3), 239-247.
  20. Lasat, M. M. 2002. Phytoextraction of toxic metals. Journal of Environmental Quality, 31(1), 109-120.
  21. Linger, P., Müssig, J., Fischer, H., and Kobert, J. 2002. Industrial hemp (Cannabis sativa L.) growing on heavy metal contaminated soil: fiber quality and phytoremediation potential. Industrial Crops and Products, 16(1), 33-42.
  22. Murch, S. J., Haq, K., Rupasinghe, H., and Saxena, P. K. 2003. Nickel contamination affects growth and secondary metabolite composition of St. John's wort (Hypericum perforatum L.). Environmental and Experimental Botany, 49(3), 251-257.
  23. Prasad, A., Singh, A. K., Chand, S., Chanotiya, C., and Patra, D. 2010. Effect of chromium and lead on yield, chemical composition of essential oil, and accumulation of heavy metals of mint species. Communications in Soil Science and Plant Analysis, 41(18), 2170-2186.
  24. Sheoran, V., Sheoran, A. S., and Poonia, P. 2009. Phytomining: A review. Minerals Engineering, 22: 1007-1019.
  25. Siddiqui, F., Krishna, S. K., Tandon, P., and Srivastava, S. 2013. Arsenic accumulation in Ocimum spp. and its effect on growth and oil constituents. Acta Physiologiae Plantarum, 35(4), 1071-1079.
  26. Sierra, M., Millán, R., and Esteban, E. 2009. Mercury uptake and distribution in Lavandula stoechas plants grown in soil from Almadén mining district (Spain). Food and Chemical Toxicology, 47(11), 2761-2767.
  27. Tirillini, B., Ricci, A., Pintore, G., Chessa, M., and Sighinolfi, S. 2006. Induction of hypericins in Hypericum perforatum in response to chromium. Fitoterapia, 77(3), 164-170.
  28. Tiwari, K., Dwivedi, S., Mishra, S., Srivastava, S., Tripathi, R., Singh, N., and Chakraborty, S. 2008. Phytoremediation efficiency of Portulaca tuberosa rox and Portulaca oleracea L. naturally growing in an industrial effluent irrigated area in Vadodra, Gujrat, India. Environmental Monitoring and Assessment, 147(1-3), 15-22.
  29. Wu, G., Kang, H., Zhang, X., Shao, H., Chu, L., and Ruan, C. 2010. A critical review on the bio-removal of hazardous heavy metals from contaminated soils: issues, progress, eco-environmental concerns and opportunities. Journal of Hazardous Materials, 174(1), 1-8.
  30. Zheljazkov, V. D., and Nielsen, N. E. 1996b. Studies on the effect of heavy metals (Cd, Pb, Cu, Mn, Zn and Fe) upon the growth, productivity and quality of lavender (Lavandula angustifolia Mill.) production. Journal of Essential Oil Research, 8(3), 259-274.
  31. Zheljazkov, V. D., Craker, L. E., Xing, B., Nielsen, N. E., and Wilcox, A. 2008. Aromatic plant production on metal contaminated soils. Science of the Total Environment, 395(2), 51-62.