Evaluation of Ammonia Nitrogen Loss from Diammonium Phosphate Fertilizer under Field Conditions (A Case Study of Sugarcane)

Document Type : Research Paper

Authors

1 عضو هیأت علمی گروه خاکشناسی، دانشکده کشاورزی و منابع طبیعی، دانشگاه آزاد اسلامی، اهواز، ایران

2 Academic Staff Member, Department of Soi Science, College of Agriculture, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran.

Abstract

Diamonium phosphate is the basic fertilizer commonly applied to sugarcane cultivations. Under the climatic conditions in southern Khuzestan with its calcareous soils, a lot of the fertilizer nitrogen may become unavailable to the plant due to its loss as gaseous ammonia. This study was carried out to explore the effects of soil, time lapse, and weather conditions on nitrogen losses emitted in the form of gas. For this purpose, an experiment was conducted using plots in two sugarcane fields with different soil textures (Clay and Silty Clay Sand). To each plot, 300 kg ha-1 of diamonium phosphate fertilizer was applied along sugarcane furrows (soil surface) using the stripping method. Samples of the fertilizer spread in the plots were taken over a period of six weeks to measure residual nitrogen in the samples. Soil samples were also taken before and after fertilizer application to determine soil physicochemical characteristics. The results obtained were analyzed in a randomized complete block design and the mean of treatments were compared using the Duncan method. No significant differences in gaseous nitrogen losses from diamonium phosphate fertilizer were observed between the soil of a silty clay loam texture and that with a clay texture. Time lapse and temperature changes, however, showed significant effects (α= 1%), with the highest nitrogen loss recorded from the third week onwards. It was concluded that shorter time intervals between fertilizer application (base fertilizer) and sugarcane cultivation might help prevent high nitrogen losses and improve upon fertilizer effects.

Keywords


  1. برزگر، ع. 1387. خاک‌های شور و سدیمی: شناخت و بهره‌وری. چاپ دوم. انتشارات دانشگاه شهید چمران اهواز.
  2. جاویدان، ا.، ح. محرابی بشرآبادی و م. پاکروان. 1389. بررسی مصرف کودهای شیمیایی و  پیش‌بینی روند آینده آن در ایران. اولین کنگره چالش‌های کود در ایران. تهران.
  3. جعفری، س.، ع. ع. ناصری و ح. نادیان. 1383. توصیه کودهای پرمصرف و کم‌مصرف در اراضی جدید تحت کشت نیشکر. بیست و ششمین سمینار سالیانه صنایع قند و شکر ایران. مشهد.
  4. سازمان هواشناسی استان خوزستان. آمار دوره‌ای 22 ساله (سال‌های 1376-1345) ایستگاه‌های سینوپتیک اهواز.
  5. سالاردینی، ع. 1391. حاصل‌خیزی خاک. چاپ نهم، انتشارات دانشگاه تهران.
  6. ملکوتی، م. ج. و م. همایی. 1383. حاصل‌خیزی خاک‌های مناطق خشک. انتشارات دانشگاه تربیت مدرس.
  7. مهندسین مشاور یکم. 1369. مطالعات اولیه خاک‌شناسی اراضی شرکت توسعه نیشکر و صنایع جانبی. کشت و صنعت‌های امیرکبیر و میرزا کوچک‌خان.
  8. Blackburn, F. 2005. Sugarcane (Tropical agriculture series). Longman Inc., New York, USA.
  9. Bless, H. G., R. Beinhauer, and B. Sattelmachler. 1991. Ammonia emission from slurry application to wheat stubble and rape in north Germany. The Journal of Agricultural Science. 117(2):225-231.
  10. Cerretta, C. A., E. J. Basso, and M. Silvaria. 2002. Ammonia volatilization from slurry soil application. 17th WCSS, 14-22 August 2002. Thailand.
  11. Dell Moro, S., D. A. Horneck, and D. M. Sullivan. 2015. Ammonia volatilization from urea fertilizer. Western Nutrient Management Conference. Vol. 11. Reno, NV.
  12. Engel, R., C. Jones, and R. Wallander. 2013. Ammonia volatilization losses were small after mowing field peas in dry conditions. Canadian Journal of Soil Science. 93:239-242.
  13. Feen, L. B., and D. E. Kissel. 1976. Ammonia volatilization from surface application of ammonium compound on calcareous soil. Soil Science Society of America Journal. 37(6):855-859.
  14. Food and Agriculture Organization of the United Nations (FAO). 2016. World fertilizer trends and outlook to 2019. Rome.
  15. Gordon, R., M. Leclerc, and R. Brancle. 1988. Field estimates of ammonia volatilization from swine manure by a simple micrometeorological technique. Canadian. Soil Science. 68:369-380.
  16. Hanks, R. J., S. A. Bowers, and L. D. Bark. 1961. Influence of soil surface condition on soil temperature and evaporation. Soil Science. 91(4): 233-238.
  17. Hargrove, W. L., D. e. Kissel, and L. Feen. 1977. Field measurement of ammonia volatilization from surface application of ammonia salts to calcareous soil. Agronomy Journal. 69(3): 437-47.
  18. Liyanage, L. R., A.N. Jayakody, and G.P. Gunaratne. 2014. Ammonia Volatilization from Frequently Applied Fertilizers for the Low-Country Tea Growing Soils of Sri Lanka. Tropical Agricultural Research Vol. 26 (1): 48– 61.
  19. Moal, J. F., J. Martinez, and F. Guiziou. 1995. Ammonia volatilization following surface-applied pig cattle slurry in France. The Journal of Agricultural Science. 125(2): 245-252.
  20. Rochette, P., Denis A. Angers, M. H. Chantigny, and M.Gasser. 2013. NH3 volatilization, soil NH4 concentration and soil pH following subsurface banding of urea at increasing rates. Canadian Journal Soil Science. 93:261-268.
  21. Sommer, G. S., E. Frilis, A. Bach, and J. K. Schjorring. 1997. Ammonia volatilization from pig slurry applied with trail hoses or broad spread to winter wheat: effects of crop developmental stage, microclimate, and leaf ammonia absorption. Journal of Environmental Quality. 26(4):1153-1160.
  22. Thompson, R. B., B. Pawn, and Y. Rees. 1990. Ammonia volatilization from cattle slurry following surface application to grass land. Plant and Soil. 125:119-128.
  23. Yunhai Zhang, Xu. Nianpeng, H. 2014. Increase in ammonia volatilization from soil in response to N deposition in Inner Mongolia grasslands. Atmospheric Environmental. 84: 165-162.