Using Azospirillum to enhance wheat yield in calcareous soils

Document Type : Research Paper

Author

Department of Soil and Water Research, Golestan Research Center of Agriculture and Natural Resources

Abstract

Azospirillum plays a significant role in the quantitative and qualitative enhancement of cropyield. Its isolates, however, exhibit extreme differences as reflected in their impacts on crop yield. In this study, isolates of Azospirillum were initially compared with respect to their morphological traits and such growth promoting characteristics as nitrogen fixation; solubility of insoluble phosphorus; and their auxin, sidrophore, hydrogen cyanide (HCN), and ACC-deaminas enzymeproduction. Furthermore, five isolates characterized by superior growth promoting characteristicswere investigated for their effects on yield and its components in wheat Morvarid cultivar. For this purpose, an experiment was conducted in a randomized complete block design with 6 bacterial treatments including five Azospirillum isolates and one control treatment (without bacterial inoculation) with 4 replicates at Iraqimahaleh Station, Golestan Agricultural and Natural Resources Research Center, where the soil is classified in the large Torriorthents Group. Results of seed inoculation in selected isolates showed that the impacts of different Azospirillumisolates on wheat yield components such as panicle length, peduncle length, number of seeds per panicle, number of panicles per square meter, weight of 1000 seeds, seed yield, and straw yield were statistically significant at 1% confidence level, as evidenced by increases of 14.91, 47.94, 25.98, 24.97, 82.86, 20.42, and 37.88%, respectively, in the above traits of Mordavid cultivar relative to those of the control with no inoculation.

Keywords


  1. احمدی،ک. قلیزاده، ح.ا. عبادزاده،ح.ر.حاتمی،ف. فضلی استبرق،م.حسین پور،ر.کاظمیان،آ. و رفیعی،م..1395. آمارنامه کشاورزی  سال زراعی 94 -1393جلد اول :محصولات زراعی. وزارت جهادکشاورزی، معاونت برنامهریزی و اقتصادی، مرکز فناوری اطلاعات و ارتباطات. 163ص
  2. ارزانش، م.ح.رحیمیان، ح.ا.علیخانی،ح.ع.خاوازی،ک.1388.جداسازی و گروه بندی جدایه های Azospirillum بومی خاک های ایران ، مجله پژوهشهای خاک( علوم خاک و آب).جلد23(2): 205- 215
  3. ارزانش، م. ح. کشاورز،پ.همتی،ا.توسلی،ع.ر.1389. استفاده از باکتری های Azospirillum برای افزایش عملکرد گندم. گزارش نهایی موسسه تحقیقات خاک و اب .شماره نشریه 1546. 86ص
  4. ارزانش،م. ح. ، علیخانی،ح. ع. رحیمیان، ح. ا.، خاوازی، ک.، بی همتا، م. ر. 1387. بررسی پتانسیل کاربرد برخی ازجدایه های آزوسپیریلومی محرک رشد گیاه بر عملکرد گندم در سطوح مختلف خشکی . پایان نامه دکتری رشته بیولوژِی و بیوتکنولوژی خاک. گروه مهندسی علوم خاک.دانشکده مهندسی آب و خاک، پردیس کشاورزی و منابع . دانشگاه تهران. کرج. ایران. 208ص.
  5. Alexander, D.B., Zuberer, D.A. 1991. Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biology and Fertility of Soils 12:39–45
  6. Arzanesh, M.H., Alikhani, H.A., Rahimiyan,H.A., Khavarzi, K. ,Bihamta,M.R. 2009. The potential effects of some Azospirillum strains as plant growth promoting rhizobacteria on wheat (Trichum asetivum L.) yeild under drought stress Ph.D. Thesis, Department of  Soil science , Faculty of Soil and Water Engineering. University College of Agriculture and Natural Resources, University of Tehran, Tehran, Iran.210 pp.
  7. Ashrafuzzaman, M. H. F, Ismail, M.R., Ismail, M.D.R., Hoque, M.D.A., Shaidullah, S.M., Menon, S. 2009. Efficiency of plant growth promoting rhizobacteria (PGPR) for the enhancement of rice growth. African Journal of  Biotechnology,  8: 1247-1252.
  8. Askary, M., Mostajeran, A., Amooaghaei, R. and Mostajeran, M. 2009. Influence of the Co-inoculation Azospirillum brasilense and Rhizobium meliloti plus 2,4-D on Grain Yield and N, P, K Content of Triticum aestivum (Cv. Baccros and Mahdavi. American-Eurasian Journal Of Agricultural & Environmental Sciences, 5 (3): 296-307.
  9. Bartel, B. 1997. Auxin biosynthesis. Annu.Rev.Plant Physiol.Plant Mol.Biol.48:51-66.
  10. Bashan Y., De-Bashan L.E., 2010. How the Plant Growth-Promoting Bacterium Azospirillum Promotes Plant Growth-a Critical Assessment, Advance in Agronomy, 108:77-136
  11. Bashan, Y., and Holguin, G. 1997. Azospirillum-plant relationships: Environmental and physiologi­cal advances (1990–1996). Canadian Journal of Microbiology,43: 103–121.
  12. Bashan, Y., Dubrovsky, J.G. 1996 . Azospirillum spp. participation in dry matter partitioning in grasses at the whole plant level. Biology and Fertility of Soils,23(4):435-440
  13. Bashan, Y., Holguin, G., de-Bashan, L.E. 2004. Azospirillum-plant relationships: Physiological, molecular, agricultural, and environmental advances (1997–2003). Canadian Journal of Microbiology,50: 521–577.
  14. Bashan, Y., Puente, M.E., Rodriguez-Mendoza, M.N., Toledo, G., Holguin, G. ,  Ferrera-Cerrato, R., and Pedrin, S. 1995. Survival of Azospirillum brasilense in the bulk soil and rhizosphere of 23 soil types. Appl. Environ. Microbiology, 61: 1938-1945.
  15. Bottini, R., Fulchieri, M., Pearce, D., Pharis, R.P. 1989. Identification of gibberellins A1, A3 and iso A3 in cultures of Azospirillum lipoferum. Plant Physiolology, 90:45–47.
  16. Bric, J. M., Bostock, R. M., Silverstone, S. E. 1991. Rapid In-Situ assay for indole-acetic acid production by bacteria immobilized on a nitrocellulose membrane. Applied and Environmental Microbiology. 57: 535-538.
  17. Burdman, S., Kigel, J., Okon, Y. 1996. Effects of Azospirillum brasilense on nodulation and growth of common bean (Phaseolus vulgaris L.). Soil Biology and Biochemistry, 29:923–929.
  18. Caceres, E. A. R, 1982. Improved medium for isolation of Azospirillum spp.  Applied and Environmental Microbiology, 44: 990–991.
  19. Cassán, F., Bottini, R., Schneider, G., Piccoli, P. 2001 Azospirillum brasilense and Azospirillum lipoferum hydrolyze conjugates of GA20 and metabolize the resultant aglycones to GA1 in seedlings of rice dwarf mutants. Plant Physiology,125:2053–2058
  20. Cassan, F., Diaz-Zorita ,M. 2016. Azospirillum sp. in current agriculture: From the laboratory to the field, Soil Biology and Biochemistry, 103: 117-130
  21. Cohen, A.C., Bottini, R., Piccoli, P.N .2008.Azosprillium brasilense Sp 245 produces ABA in  chemically defined culture medium and increases ABA content in Arabidopsis plants. Plant Growth Regulation, 54:97–103
  22. Coninck, K. D., Horemans, S., Randombage, S. and Vlassak, K. 1998. Occurrence and survival of Azospirillum spp. in temperate regions. Plant  and Soil,110: 213-218.
  23. Dahm, H., Róz˙ycki, H., Strzelczyk, E, Li, C.Y. 1993. Production of B-group vitamins by Azospirillum spp. grown in media of different pH at different temperatures. Zentralbl Mikrobiol, 148:195–203.
  24. De-Bashan, L.E., Moreno, M., Hernandez, J.P., and Bashan, Y. 2002. Removal of ammonium and phosphorus ions from synthetic wastewater by the microalgae Chlorella vulgaris coimmobilized in alginate beads with the microalgae growth promoting bacterium Azospirillum brasilense. Water Research. 36: 2941–2948.
  25. De-Bashan, L.E., Hernández, J.P., Morey, T., and Bashan, Y. 2004. Microalgae growth-promot­ing bacteria as “helpers” for microalgae: A novel approach for removing ammonium and phospho­rus from municiPDAl wastewater. Water Research, 38: 466–474.
  26. Dell’Amico, E., Cavalca, L., and Andreoni, V. 2008. Improvement of Brassica napus growth under  cadmium stress by cadmium resistant rhizobacteria Soil Biology and Biochemistry, 40 : 74-84
  27. Dell’Amico, E., Cavalca, L., and Andreoni, V. 2005. Analysis of rhizobacterial communities in perennial Graminaceae from polluted water meadow soil, and screening ofmetal-resistant, potentially plant growth-promoting bacteria. FEMS Microbiology, 52(2):153-62
  28. Eckert, B., Weber, O. M., Kirchhof, G., Halbritter, A., Stoffels, M. and Hartmann, A. 2001. Azospirillum doebereinerae sp. nov., a new nitrogen fixing bacteria associated with the C4-grass Miscanthus. International Journal of Systematic and Evolutionary Microbiology, 51:17–26.
  29. German, M.A., Burdman, S., Okon, Y., Kigel, J. 2000. Effects of Azospirillum brasilense on root morphology of common bean (Phaseolus vulgaris L.) under different water regimes. Biology and Fertility of Soils, 2: 259–264.
  30. Holguin, G., Pdatten, C.L., and Glick, B.R. 1999. Genetics and molecular biology of Azospirillum. Biology and Fertility of Soils, 29: 10–23.
  31. Hossain, M., Jahan, I., Akter, S., Rahman, N., Rahman, S. M. 2015. Effects of Azospirillum isolates from paddy fields on the growth of rice plants. Research in Biotechnology, 6(2): 15-22.
  32. Mertens, T., Hess, D. 1984. Yield increase in spring wheat (Triticum asetivum L.) inoculated with Azospirillum lipoferum under greenhouse and field conditions of a temperate region. Plant and  Soil, 82: 87-99.
  33. Michiels, K., Vanderleyden, J., Van Gool, A. 1989. Azospirillum plant root association: A re­view. Biology and Fertility of Soils, 8:356–368.
  34. Michiels, K.W., Croes, C.L., and Vanderleyden, J. 1991. Two different modes of attachment of Azospirillum brasilense Sp7 to wheat roots. Journal of General of Microbiology, 137: 2241-2246.
  35. Molina-Favero, C., Creus, C.M., Simontacchi, M., Puntarulo, S.,Lamattina, L. 2008. Aerobic nitric oxide production by Azospirillum brasilense Sp245 and its influence on root architecture in tomato, Molecular Plant- Microbe Interactions ,21: 1001-1009
  36. Narendra Babu, A., Jogaiah, S., Itoc, S., Kestur Nagaraj, A., Tran, L.S. 2015. Improvement of growth,  fruit weight and early blight disease protection of tomato plants by rhizosphere bacteria is correlated with their beneficial traits and induced biosynthesis of antioxidant peroxidase and polyphenol oxidase, Plant Scinece, 231: 62–73
  37. Penrose, D.M., Glick, B.R .2003. Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiologia Plantarum ,118:10–15
  38. Pereyra, M.A., Garcia, P., Colabelli, M.N., Barassi, C.A., Creus, C.M. 2012. A better water status inwheat seedlings induced by Azospirillum under osmotic stress is related to morphological changes in xylem vessels of the coleoptile. Applied Soil Ecology, 53:94–97
  39. Piao, H. L., Lim, J. H., Kim, S. J., Cheong, G.W., andHwang, I. 2001. Constitu- tive over-expression of AtGSK1 induces NaCl stress responses in the absence of NaCl stress and results in enhanced NaCl tolerance in Arabidopsis. The Plant Journal, 27: 305–314.
  40. Prasad,A.,  Babu,S.2017. Compatibility of Azospirillum brasilense and Pseudomonas fluorescens in growth promotion of groundnut (Arachis hypogea L.). Annals of the Brazilian Academy of Sciences. 89(2): 1027-1040
  41. Qudsaia, B., Noshinil, Y., Asghari, B., Nadia, Z, Abida, A., Fayazul, H .2013. Effect of Azospirillum inoculation on maize (Zea mays L.) under drought stress. Pakistan Journal of  Botany, 45:13–20
  42. Riggs, P.J., Chelius, M.K., Iniguez, A.L., Kaeppler, S.M., Triplett, E.W. 2001. Enhanced maize productivity by inoculation with diazotrophic bacteria. Australian Journal of Plant Physiology, 28:829–36.
  43. Rodriguez-Salazar, J., Suarez, R., Caballero-Mellado, J., Itturiaga, G .2009. Trehalose accumulation in Azospirillum brasilense improves drought tolerance and biomass in maize plants. FEMS(Federation of European Microbiological Societies) Microbiology  Letters ,296:52–59
  44. Romero A.M., Correa O.S., Moccia S., Rivas J.G., 2003. Effect of Azospirillum-mediated plant growth promotion on the development of bacterial diseases on fresh-market and cherry tomato, Journal of Applied Microbiology,95, 832-838
  45. Saha R., Saha N., Donofrio R.S., Bestervelt L.L., 2013. Microbial siderophores: a mini review, Journal of Basic Microbiology, 53:303-317
  46. Sang-MoK,RadhakrishnanR, KhanAL,Min-JiK, Jae-Man P, Bo-RaK, Dong-Hyun S, In-Jung L .2014. Gibberellin secreting rhizobacterium, Pseudomonas putida H-2-3modulates the hormonal and stress physiology of soybean to improve the plant growth under saline and drought conditions. Plant Physiology and Biochemistry, 84:115–124
  47. Seshadri, S., Muthukumarasamy, R., Lakshminarasimhan, C., and Ignacimuthu, S. (2000). Solubiliza­tion of inorganic phosphates by Azospirillum halopraeferans. Current Science. 79: 565–567.
  48. Shah, S., Rao, K.K., Desai, A. (1993). Production of catecholate type of siderophores by Azospiril­lum lipoferum M. Indian Journal of  Expermental of Biology ,31:41–44.
  49. Sperberg, J.I. 1958. The incidence of apatite-solubilizing organisms in the rhizosphere and soil. Australian  Journal Agriculture Research Economics, 9:778
  50. Tarrand, J.J., Kreig, N.R., Döbereiner, J. (1978). A taxonomic study of the Spirillum lipoferum group, with a descriptions of a new genus, Azospirillum gen. nov., and two species, Azospirillum li­poferum (Beijerink) comb. nov.  and Azospirillum brasilense sp. nov. Candian Journal of Microbiology, 24:967-980.
  51. Turner, G. L. & Gibson, A. H. (1980). Measurement of nitrogen fixation by indirect means. In Methods for Evaluating Biological Nitrogen Fixation, pp. 111-138. Edited by F. J. Bergersen. Chichester: Wiley.