Water and Soil Productivity in the Crop Rotations Practiced in Isfahan Province

Document Type : Research Paper

Authors

1 Assistant Professor, Horticulture Crops Research Department, Isfahan Agricultural and Natural Re-sources Research and Education Center, AREEO, Isfahan, Iran.

2 Assistant Professor, Economic, Social and Extension Research Department, Isfahan Agricultural and Natural Resources Research and Education Center

Abstract

Fort the purposes of this study, data were collected using a questionnaire on crop rotations in Isfahan Province alongside field observations and commonly used indices. It was found that the rotations common in all the three cold, temperate, and warm climatic zones identified in the province were often short-termed with two or three crops grown. The temperate zone, however, is characterized by 30 dominant types of rotation. Land use efficiencies of 43-98%, 60-95%, and 50-81% were recorded for the temperate, warm and cold zones, respectively. Production efficiency in the rotations was found to have declined to levels below 40 kg per rotation day depending on the type of crop grown, cultivation of small grains such as wheat and barley or certain oilseeds such as rapeseed and safflower, and fallow periods allowed between rotations. The presence of high-yield forage crops (such as fodder corn), especially when combined with tuberous crops (such as sugar beet) and summer crops (such as watermelon and honeydew melon), was found to increase the production efficiency of the rotations (sometimes to more than 200 kg day-1 in the temperate zone). Water productivity in crop rotations across the three zones rarely ever exceeded 6 kg m-3. Crop diversification in the rotations, therefore, seems to be the most urgent measure that should be taken in the three climatic zones. Finally, more extensive cultivation of tuberous crops in the temperate and warm zones as well as wider growth of pulses in the cold zones seem not only to be feasible but also economically rewarding.

Keywords


  1. آئینه بند ا. 1384. تناوب زراعی. انتشارات جهاد دانشگاهی مشهد. مشهد. ایران، 407 صفحه
  2. جلالی، ا. ه.، و ع. نیکویی .1397. نقش تناوب زراعی در حفاظت از منابع آب‌وخاک )مطالعه موردی: دهستان دشت شهرضا(. نشریه علمی ترویجی مدیریت اراضی. جلد6، ص 95-83.
  3. دهقان، ا.، ر. ذبیحی افروز و م. حسینی .1388. بهره‌وری محصولات زراعی در ازای مصرف آب در ایران و مقایسه آن با کشورهای جهان. موسسه پژوهش‌های برنامه‌ریزی، اقتصاد کشاورزی و توسعه روستایی. وزارت جهاد کشاورزی 82 صفحه.
  4. زارع فیض‌آبادی ا. 1394. تأثیر مدیریت بقایای گیاهی در نظام‌های تناوبی مختلف بر عملکرد غده و خسارت کرم‌های مفتولی سیب‌زمینی. نشریه علوم باغبانی. جلد 29، ص 593-582.
  5. زارع فیض‌آبادی، ا. و م. عزیزی .1391. اثر نظام‌های تناوب زراعی مختلف بر عملکرد گندم در اقلیم سرد خراسان رضوی. مجله به زراعی نهال و بذر. جلد 2، ص275-261.
  6. سازمان هواشناسی کشوری .1399. گزارش وضع هوای استان های کشور. بولتن سالیانه آمار هواشناسی . http://metservice.ir/rain
  7. سالمی، ح.، ا. ه. جلالی، ن. تومانیان، ع. نیکویی و م. خداقلی .1398. بررسی و تعیین نیازآبی خالص گیاهان قابل کشت در استان اصفهان به‌منظور مدیریت بهینه تقاضای آب در بخش کشاورزی. موسسه تحقیقات فنی و مهندسی کشاورزی، گزارش نهایی طرح تحقیقاتی، شماره فروست 56725.
  8. کوچکی، ع.، م. نصیری، ا. زارع فیض‌آبادی و م. جهان‌بین .1383. ارزیابی تنوع نظام‌های زراعی ایران. پژوهش و سازندگی. جلد63، ص 83-70.
  9. Asimeh, M., M. Nooripoor, H. Azadi, V. Van Eetvelde, P. Sklenička, and F. Witlox. 2020. Agricultural land use sustainability in Southwest Iran: Improving land leveling using consolidation plans. Land Use Policy. 94:1-11.
  10. Bai, Z., T. Caspari, M.R. Gonzalez, N.H. Batjes, P. Mäder, E.K. Bünemann, R. de Goede, L. Brussaard, M. Xu, C.S.S. Ferreira, and E. Reintam. 2018. Effects of agricultural management practices on soil quality: A review of long-term experiments for Europe and China. Agriculture, Ecosystems and Environment. 265: 1-7.
  11. Benitez, M., L.O. Shannon, and L.R. Michael. 2017. Effects on maize seedling health and associated rhizosphere micro biome. Scientific Reports. 7: 1-13.
  12. Bennett, A.J., G.D. Bending, D. Chandler, S. Hilton, and P. Mills. 2012. Meeting the demand for crop production: the challenge of yield decline in crops grown in short rotations. Biological Reviews. 87: 52–71.
  13. Boincean, B., and D. Dent. 2019. Crop rotation. In farming the black earth (pp. 89-124). Springer, Cham.
  14. Chiwona-Karltun, L., M. Lemenih, M. Tolera, T. Berisso, and E. Karltun. 2017. Crop theft and soil fertility management in the highlands of Ethiopia. (https://creativecommons.org/licenses/by-nd/4.0/).
  15. De Martonne, E .1925. Traité de Géographie Physique, Vol I: Notions generals, climate, hydrography. Geography Review. 15(2):336–337
  16. Han, E., T. Kautz, U. Perkons, D. Uteau, S. Peth, N. Huang, R. Horn, U. Kopke. 2015. Root growth dynamics inside and outside of soil bio pores as affected by crop sequence determined with the profile wall method. Biology and Fertility of Soils. 51, 847-856.
  17. Jones, O.R., and T. Popham. 1997. Cropping and tillage systems for dryland grain production. Agronomy Journal. 89: 222-232.
  18. Mahal, N.K., M.J. Castellano, and F.E. Miguez. 2018. Conservation agriculture practices increase potentially mineralizable nitrogen: a meta-Analysis. Soil Science Society of America Journal, 82: 1270–1278.
  19. Renwick, L.L., T.M. Bowles, W. Deen, and A.C. Gaudin. 2019. Potential of Increased Temporal Crop Diversity to Improve Resource Use Efficiencies: Exploiting Water and Nitrogen Linkages. In Agroecosystem Diversity (pp. 55-73). Academic Press.
  20. Selim, M. 2019. A review of advantages, disadvantages and challenges of crop Rotations. Egyptian Journal of Agronomy. 41:1-10.
  21. Tomar, S., and A. Tiwar. 1990. Production potential and economics of different crop sequences. Indian Journal Agronomy. 32: 30-35.
  22. Yamori, W. 2016. Photosynthesis and respiration. In Plant factory (pp. 141-150). Academic Press.
  23. Zhao, J., Y. Yang, K. Zhang, J. Jeong, Z. Zeng, and H. Zang. 2020. Does crop rotation yield more in China? A meta-analysis. Field Crops Research. 245:107659.