Feasibility of Using Insect Frass to Improve Soil Fertility

Document Type : Research Paper

Author

Department o Entomology

Abstract

Insects are the most abundant organisms associated with plants and soil. Mass rearing of insects to supply animal feed has provided access to insect frass as a new source of organic fertilizer. The chemical composition of insect frass (i.e., proper amounts of organic nitrogen, soluble carbon, and nutritional elements as well as a low carbon to nitrogen ratio) and its physical properties (fine size and layered structure) have given rise to an increasing interest in their potential use for enhancing soil fertility and developing novel organic products. In addition to its being a rich source of plant nutrients, insect frass not only contains beneficial microorganisms such as some species of Bacillus and Pseudomonas bacteria but is also the only source of chitin available top plants to improve their resistance to biotic (insects and nematodes) and abiotic (drought and salinity) stresses. Current studies in the field are focused on the two industrial insects of black soldier fly (Hermetia illucens) and mealworm (Tenebrio molitor). The results have shown that application of 5-10 tons of frass from these two insects per hectare of farm soil increases the yield, both in quantity and quality, in such important crops as rapeseed, barley, rye grass, corn, and sugar beet. Given the nationwide rise in the mass rearing of industrial insects, it is instructive to accelerate the development of appropriate methods and standards for their application as a fertilizer.

Keywords


  1. ارباب، ع.، 1397. حشره­شناسی صنعتی: جلد اول: سوسک زرد آرد (سوسک زرد آرد)Tenebrio molitor (Col.: Tenebrionidae) آشنایی، پرورش، فرآوری و کاربردها. انتشارات دانشگاه آزاد اسلامی. 215ص.
  2. ارباب، ع.، 1398. مروری برامکان جایگزینی آرد حشرات با آرد ماهی درجیره غذایی آبزیان. بهره­برداری وپرورش آبزیان، جلد 8، شماره 2، 15-1.
  3. رضایی، ح. 1392. مروری برتحقیقات کاربردکودهای دامی در اراضی کشاورزی ایران. مدیریت اراضی، جلد 1 شماره 1، 68-55.
  4. غلامی، ح.، صیدی، د.، رضا یزدی، ک.، اسماعیلی، ح.، افتخاری، م.، اقباله، ا.، پهلوان شریف، ا. و راهنورد ع. 1394. راهنمای پرورش گوسفند و بز. نشر آموزش کشاورزی، 533 ص.
  5. Beesigamukama, D., Mochoge, B., Korir, N., Musyoka, M.W., Fiaboe, K.K. M., Nakimbugwe, D., Khamis, F.M., Subramanian, S., Dubois, T., Ekesi, S. and Tanga, C. M. 2020. Nitrogen fertilizer equivalence of Black Soldier Fly frass fertilizer and synchrony of nitrogen mineralization for maize production. Agronomy, 10:1395.
  6. Choi, Y.C., Choi, J.Y. Kim, J.G., Kim, M.S., Kim, W.T., Park, K.H., Bae, S.W. and Jeong, G.S. 2009. Potential usage of food waste as a natural fertilizer after digestion by Hermetia illucens(Diptera: Stratiomyidae). International Journal of Industrial Entomology, 19: 171-174.
  7. Couture, J.J., and Lindroth, R.L. 2014. Atmospheric change alters frass quality of forest canopy herbivores. Arthropod-Plant Interactions, 8: 33–47.
  8. Douglas, AE. 2018. Strategies for enhanced crop resistance to insect pests. The Annual Review of Plant Biology,69: 637–660.
  9. Escudero, N., Lopez-Moya, F., Ghahremani, Z., Zavala-Gonzalez, E.A., Alaguero-Cordovilla, A., Ros-Ibañez, C., Lacasa, A., Sorribas, F.J., and Lopez-Llorca, L.V. 2017. Chitosan increases tomato root colonization by Pochonia chlamydosporia and their combination reduces root-knot nematode damage. Frontiers in Plant Science, 8:1415.
  10. Fagan, W.F.,Siemann, E., Mitter, C., Denno, R.F., Huberty, A.F,. Woods, A., Elser, J.J. 2002. Nitrogen in insects: Implications for trophic complexity and species diversification. The American Naturalist, 160: 784-802.Fielding, D.J.,Trainor, E., and Zhang, M. 2012. Diet influences rates of carbon and nitrogen mineralization from decomposing grasshopper frass and cadavers. Biology and Fertility of Soils49: 5.
  11. Frost, C.J., and Hunter, M.D. 2007. Recycling of nitrogen in herbivore feces: Plant recovery, herbivore assimilation, soil retention, and leaching losses. Oecologia, 151: 42-53.
  12. Garttling, D., Kirchner, S.M. and Schulz, H. Assessment of the N- and P-Fertilization effect of black soldier fly (Diptera: Stratiomyidae) by-products on maize. Journal of Insect Science, 20: 8, 1–11.
  13. Grace, J.R. 1986. The influence of gypsy moth on the composition and nutrient content of litter fall in a Pennsylvania oak forest. Forest Science, 32: 855–870.
  14. Hollinger, D.Y. 1986. Herbivory and the cycling of nitrogen and phosphorus in isolated California oak trees. Oecologia, 70: 291-
  15. Houben, D., Daoulas, G., Faucon, M., and Dulaurent, A.M. 2020. Potential use of mealworm frass as a fertilizer: Impact on crop growth and soil properties. Scientific Reports, 10:
  16. Huis, A. van. 2013. Potential of insects as food and feed in assuring food security. In: Annual review of entomology 58: 563–83.
  17. Hunter, M.D. 2001. Insect population dynamics meets ecosystem ecology: Effects of herbivory on soil nutrient dynamics. Agricultural and Forest Entomology, 3: 77-84.
  18. Hunter, M.D., Linnen, C.R., and Reynolds, B.C. 2003. Effects of endemic densities of canopy herbivores on nutrient dynamics along a gradient in the southern Appalachians. Pedobiologia, 47: 231–244.
  19. Kagata, H. and Ohgushi, T. 2012. Positive and negative impacts of insect frass quality on soil nitrogen availability and plant growth. Population Ecology, 54, 75–82.
  20. Klammsteiner, T., Turan,V., Oberegger, S., Insam, H., and Fernandez-Delgado J.M. 2019. Black soldier fly, (Hermetiaillucens) frass as plant fertilizer. 7th International conference on sustainable solid waste management.39-40.
  21. Klammsteiner, T., Turan,V., Fernandez-Delgado J.M., Oberegger, S., and Insam, H.2020. Suitability of black soldier fly frass as soil amendment and implication for organic waste hygienization. Agronomy. 10, 1578.
  22. Koller, R., Rodriguez, A., Robin, C., Scheu, S., and Bonkowski, M. 2013. Protozoa enhance foraging efficiency of arbuscular mycorrhizal fungi for mineral nitrogen from organic matter in soil to the benefit of host plants. New Phytologist, 199: 203-211.
  23. Kummerow, J., Alexander, J.V., Neel, J.W., and Fishbeck, K. 1978. Symbiotic nitrogen fixation inCeanothus roots. American Journal of Botany, 65: 63-69.
  24. Lalander, C.H., Fidjeland, J., Diener, S., Eriksson,S., and Vinnerås, B. 2014. High waste-to-biomass conversion and efficient Salmonella reduction using black soldier fly for waste recycling”. In: Agronomy for Sustainable Development, 35: 261–271.
  25. Liu, H.R., Yang, Z.F., Tan, D.F., and Wu, Z.S. 2003. Study on the fertilizer efficiency of the frass of Tenebrio molitor Journal of Quanzhou Normal University, 21: 68–70.
  26. Luo, H.Y., Wang, H., and Wang, Q. 2011. Effects of different application amount of yellow mealworm excrement on growth and quality of rape. Shandong Agricultural Sciences, 8:75-77.
  27. Madritch, M.D., Jordan, L.M., and Lindroth, R.L. 2007. Interactive effects of condensed tannin and cellulose additions on soil respiration. Canadian Journalof Forest Research, 37:2063–2067.
  28. Malerba, M., and Cerana, R. Recent advances of chitosan applications in plants. Polymers, 10:118.
  29. McFarlane, J.E. and ALLI, I. 1985. Volatile fatty acids of frass of certain omnivorous insects. Journal of Chemical Ecology, 11: 1. 59-63.
  30. Poveda, J. Jiménez-Gómez, A., Saati-Santamaría, Z., Usategui-Martín, R., Rivas and García-Fraile, R. P. 2019. Mealworm frass as a potential biofertilizer and abiotic stress tolerance inductor in plants. Applied Soil Ecology, 142: 110-122.
  31. Quilliam, R.S., Nuku-Adeku, C., Maquart, P., Little, D., Newton, R. and Murray, F. 2020. Integrating insect frass biofertilisers into sustainable peri-urban agro-food systems. Journal of Insects as Food and Feed. 6: 315–322.
  32. Ray, S., Alves, P.C., Ahmad, I., Gaffoor, I., and Acevedo, F.E. 2016. Turnabout is fair play: Herbivory induced plant chitinases excreted in fall armyworm frass suppress herbivore defenses in maize. Plant Physiol. 171:694–706.
  33. Reynolds, H.L., Packer, A., Bever, D., and Clay, K. 2003. Grassroots Ecology: Plant-Microbe-Soil interactions as drivers of plant community structure and dynamics. Ecology. 84: 9. 2281-2291.
  34. Rynk, R., van de Kamp, M., Willson, G.B., Singley, M.E. Richard, T.L. Kolega, J.J. Gouin, R. L. Laliberty, J.R., Kay, D. Murphy, D.W. Hoitink, H.A.J. and Brinton, W.F. 1992. On-Farm composting handbook. (ed). Northeast Regional Agricultural Engineering Service, Ithaca, N.Y.
  35. Sánchez, C. 2009. Lignocellulosic residues: Biodegradation and bioconversion by fungi. Biotechnological Advance, 27: 185-194.
  36. Schoonhoven, L.M, Dicke, M, and van Loon, J.A.J. 2005. Insect-Plant Biology. Oxford Biology, New York.
  37. Scott, W., Behie, M., and Bidochka, J. 2013. Insects as a nitrogen source for plants. Insects, 4: 413-424.
  38. Van Emden, H.F. 1989. Pest Control. 2nd ed.; Edward Arnold Publication. London, UK, New York.
  39. Weaver, D.K. McFarlane, J.E. and All, I. 1990. Repellencyof volatile fatty acids present in frass of larval yellow mealworms, Tenebrio molitor L. (ColeopteraTenebrionidae), to larval conspecifics. Journal of Chemical Ecology, 16:585-593.
  40. Yildirim-Aksoy, M., Eljack, R. and Beck, B.H. 2020. Nutritional value of frass from black soldier fly larvae, Hermetia illucens,in a channel catfish, Ictalurus punctatus, and diet. Aquaculture Nutrition, 26: 3. 300-309.
  41. Zahn, NH. 2017. The effects of insect frass created by Hermetia illucens on spring onion growth and soil fertility. Bachelor’s thesis, University of Stirling, Stirling, Great Britain.