Arsenic removal from soil and water by biochar:A promising environmentally-friendly approach

Document Type : Review

Author

Professor, Department of Soil Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.

Abstract

Contamination of water and soil resources with the metalloid arsenic (As) nowadays poses a major threat to human health. According to the World Health Organization (WHO), it is not only a carcinogenic substance in humans but also a toxic substance to plants. As removal from soils comprises a variety of physical, chemical, and biological methods, each with its own advantages and disadvantages. Biochar is produced through thermochemical treatment of agricultural residues, urban solid waste, and livestock manure. As one promising solution to As contamination, biochar is generally used to achieve the four major goals of enhanced soil fertility, elevated carbon sequestration in soil, restoration of degraded lands, and soil and water pollution management. Little has been reported in the literature on data-based studies concerning As immobilization in soils; however, the newly emerging areas of interest include investigation of biochar impact mechanisms  on water and contaminated soils as well as industrial-scale applications of research findings. The present study begins with a brief description of the metalloid arsenic chemistry in soil and water to proceed with a review of research findings on biochar and arsenic interactions. In this regard, the initial biomass type and pyrolysis conditions are discussed as the determining factors in such interactions. It is argued that arsenic speciation contained in water and soil may influence its mobility, bioavailability, and transfer in the presence of biochar due to soil chemistry variability, which is largely an under-investigated area in the literature. This specifically stresses the need for studies to explore biochar interactions with soil microbes in immobilizing toxic arsenic species. Another gap detected in the studies concerns the cost-benefit analysis of biochar application as a water and soil decontamination method.

Keywords


  1. Adriano, D.C, 2001. Trace Elements in Terrestrial Environments: Biogeochemistry, Bioavailability, and Risk of metals, 2nd edition. Springer, New York.
  2. Aftabtalab, A., Rinklebe J., Shaheen S.M, Niazi, N.K., Moreno-Jimenez, E., Schaller, J., and Knorr, K.H., 2022. Review on the interactions of arsenic, iron (oxy) (hydr) oxides, and dissolved organic matter in soils, sediments, and groundwater in a ternary system. Chemosphere, 286(2), pp. 131-147.https://doi.org/1016/j.chemosphere.2021.131790
  3. Agrafioti, E., Kalderis, D., and Diamadopoulos, E. 2014. Arsenic and chromium removal from water using biochars derived from rice husk, organic solid wastes and sewage sludge. Journal of Eenvironmental Management, 133, pp. 309-314.

 https://doi.org/10.1016/j.jenvman.2013.12.007

  1. Ahmad, M., Rajapaksha, A. U., Lim, J. E., Zhang, M., Bolan, N., Mohan, D., and Ok, Y.S. 2014. Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere, 99, pp. 19-33.

https://doi.org/10.1016/j.chemosphere.2013.10.071

  1. Al-Abed, S.R., Jegadeesan, G. Purandare, J. and Allen, D. 2007. Arsenic release from iron rich mineral processing waste: influence of pH and redox potential. Chemosphere, 66, pp. 775–782. https://doi.org/10.1016/j.chemosphere.2006.07.045
  2. Amen, R., Bashir, H., and Bibi, I. 2020. A critical review on arsenic removal from water using biochar-based sorbents: the significance of modification and redox reactions. Chemical Engineering Journal, 396, pp.125-145. https://doi.org/10.1007/s42773-022-00181-y
  3. Beesley, L., and Marmiroli, M., 2011. The immobilization and retention of soluble arsenic, cadmium and zinc by biochar. Environmental Pollution, 159(2), pp. 474-480. https://doi.org/10.1016/j.envpol.2010.10.016
  4. Beesley, L., Inneh, O. S., Norton, G. J., Moreno-Jimenez, E., Pardo, T., Clemente, R., and Dawson, J. J. 2014. Assessing the influence of compost and biochar amendments on the mobility and toxicity of metals and arsenic in a naturally contaminated mine soil. Environmental Pollution, 186,195-202.

https://doi.org/10.1016/j.envpol.2013.11.026

  1. Beesley, L., Marmiroli, M., Pagano, L., Pigoni, V., Fellet, G., Fresno, T., & Marmiroli, N., 2013. Biochar addition to an arsenic contaminated soil increases arsenic concentrations in the pore water but reduces uptake to tomato plants (Solanum lycopersicum). Science of the Total Environment, 454, pp. 598-603. https://doi.org/10.1016/j.scitotenv.2013.02.047
  2. Bolan, N.S, Adriano, D.C and Mahimairaja, S., 2004. Distribution and bioavailability of traceelements in livestock and poultry manure by-products. Critical Reviews in Environmental Science and Technology, 34, pp 291-338.

 https://doi.org/10.1080/10643380490434128

  1. Bolan, N., Mahimairaja, S., Kunhikrishnan, A., and Choppala, G. 2013. Phosphorus–arsenic interactions in variable-charge soils in relation to arsenic mobility and bioavailability. Science of the Total Environment, 463, 1154-1162.
  2. Brookins, D. G. 1988. Eh-pH diagrams for geochemistry. Berlin, Germany: SpringerVerlag, p 288. https://doi.org/10.1016/j.scitotenv.2013.04.016
  3. Chen, Z., Wang, Y., Xia, D., Jiang, X., Fu, D., Shen, L., & Li, Q. B. 2016. Enhanced bioreduction of iron and arsenic in sediment by biochar amendment influencing microbial community composition and dissolved organic matter content and composition. Journal of Hazardous Materials, 311, 20-29. https://doi.org/10.1016/j.jhazmat.2016.02.069
  4. Cheng, C. H., and Lehmann, J., 2009. Ageing of black carbon along a temperature gradient. Chemosphere, 75 (8), 1021-1027.

https://doi.org/10.1016/j.chemosphere.2009.01.045

  1. Choppala, G., Bolan, N., Kunhikrishnan, A., & Bush, R., 2016. Differential effect of biochar upon reduction-induced mobility and bioavailability of arsenate and chromate. Chemosphere, 144, pp. 374-381.
  2. Dickens, R. and Hiltbold, A.E. 1967. Movement and persistence of methanearsonates in soil. Weeds, 15, pp. 299–304. https://doi.org/10.2307/4040993
  3. Dixit, S., and Herring, J. G. 2003. Comparison of arsenic (V) and arsenic (III) sorption onto iron oxide minerals: implications for arsenic mobility. Environmental Science & Technology, 37 (18), pp. 4182-4189. https://doi.org/10.1021/es030309t
  4. Dutta, P. K., Ray, A. K., Sharma, V. K., & Millero, F. J. 2004. Adsorption of arsenate and arsenite on titanium dioxide suspensions. Journal of Colloid and Interface Science, 278 (2), pp. 270-275. https://doi.org/10.1016/j.jcis.2004.06.015
  5. Escobar Gonzales, V. L. and Monhemius, A. J. 1988. The mineralogy of arsenatesrelating to arsenic impurity control. In: Reddy, R. G., Hendrix, J. L. and Queneau, P. B. (Eds.), Arsenic Metallurgy, Fundamentals and Applications. Metall. Soc. Inc., TMS, Warerendale, PA, pp 405–454.
  6. Ferguson, J. F. and Gavis, J. 1972. A review of the arsenic cycle in natural waters. Water Research. 6, pp 1259–1274. https://doi.org/10.1016/0043-1354(72)90052-8
  7. Fergosen, J.F and Gavis, J. 1975. A review of the arsenic cycle in natural waters. Water Resource 6, pp. 1259-1274. https://doi.org/10.1016/0043-1354(72)90052-8
  8. Goldberg, S. and Glaubig, R. A. 1988. Anion srption on a calcareous, montmorillonitic soil-arsenic. Soil Science Society of American Journal, 52, pp. 1297-1300. https://doi.org/10.2136/sssaj1988.03615995005200050015x
  9. Granchinho, S.C.R, Polishchuk, E., Cullen, W.R and Reimer, K.J, 2001. Biomethylation and bioaccumulation of arsenic (V) by marine alga Fucus gardneri. Applied Organometallic Chemistry, 15: 553--560. https://doi.org/10.1002/aoc.183
  10. Gregory, S. J., Anderson, C. W. N., Arbestain, M. C., and McManus, M. T. 2014. Response of plant and soil microbes to biochar amendment of an arsenic-contaminated soil. Agriculture, Ecosystems and Environmental, 191, pp.133-141.

https://doi.org/10.1016/j.agee.2014.03.035

  1. Ghodszad, L.,Reyhanitabar A., Maghsoodi,M.R., AsgariLajaer., B.,and Chang,S.X.,2021. Biochar affects the fate of phosphorus in soil and water: A critical review, Chemosphere, 283, pp.1-13. https://doi.org/10.1016/j.chemosphere.2021.131176
  2. Hartley, W., Dickinson, N. M., Riby, P., and Lepp, N. W. 2009. Arsenic mobility in brownfield soils amended with green waste compost or biochar and planted with Miscanthus. Environmental Pollution, 157 (10), pp. 2654-2662.

 https://doi.org/10.1016/j.envpol.2009.05.011

  1. Hingston, F.J., Posner A.M. and Quirk, J.P. 1971. Competitive adsorption of negatively charged ligands on oxide surfaces. Discussions Faraday Society Articles, 52, pp. 334–342. https://doi.org/10.1039/DF9715200334
  2. Joseph, S. D., Camps-Arbestain, M., Lin, Y., Munroe, P., Chia, C. H., Hook, J., and Lehmann, J. 2010. An investigation into the reactions of biochar in soil. Soil Research, 48 (7), pp. 501-515. https://doi.org/ 1071/SR10009
  3. Joseph, S., Husson, O., Graber, E., Van Zwieten, L., Taherymoosavi, S., Thomas, T., and Munroe, P. 2015. The electrochemical properties of biochars and how they affect soil redox properties and processes. Agronomy, 5 (3), pp. 322-340.

 https://doi.org/10.3390/agronomy5030322

  1. Khadem M.D.I and Golchin, A. 2019. Risk assessment of contamination of the country's soil and water resources with arsenic. Iranian Journal of Soil and Water Research, 50(7) pp. 1612-1617. (In Persian). https://dor.isc.ac/dor/20.1001.1.2008479.1398.50.7.24.8
  2. Lehmann, J., Rillig, M. C., Thies, J., Masiello, C. A., Hockaday, W. C., and Crowley, D. 2011. Biochar effects on soil biota–a review. Soil Biology and Biochemistry, 43 (9), pp. 1812-1836. https://doi.org/10.1016/j.soilbio.2011.04.022
  3. Liang, B., Lehmann, J., Solomon, D., Kinyangi, J., Grossman, J., O'neill, B., and Neves, E. G. 2006. Black carbon increases cation exchange capacity in soils. Soil Science Society of America Journal, 70 (5), pp. 1719-1730. https://doi.org/10.2136/sssaj2005.0383
  4. Lumsdon, D. G., Fraser A. R., Russell J. D. and Livesey N. T. 1984. New infrared band assignments for the arsenate ion adsorbed on synthetic goethite (a-FeOOH). Soil Science, 35, pp. 381–386. https://doi.org/10.1111/j.1365-2389.1984.tb00294.x
  5. Ma, L.Q, Komar, K.M, Tu C, Zhang, W.H, Cai, Y. and Kennelley, E.D. 2001. A fern that hyperaccumulates arsenic: A hardy, versatile, fast-growing plant helps to remove arsenic from contaminated soils. Nature, pp.409- 579. https://doi.org/10.1038/35054664
  6. Mahimairaja, S., Bolan, N.S, Adriano, D.C and Robinson, B., 2005. Arsenic contamination andits risk managment in complex environmental settings. Advance Agronomy, 86:pp. 18-82. https://doi.org/10.1016/S0065-2113(05)86001-8
  7. Mandal, B. K. and Suzuki, K. T. 2002. Arsenic round the world: a review, Talanta, 58, pp.201–235. https://doi.org/10.1016/S0039-9140(02)00268-0
  8. Manning, B. A. and Goldberg, S., 1997. Arsenic (III) and arsenic (V) adsorption on three California soils. Soil Science, 162, pp. 886-895. https://doi.org/10.1097/00010694-199712000-00004
  9. Meharg, A. A., and Hartley‐Whitaker, J. 2002. Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species.New Phytologist, 154 (1), pp. 29-43. https://doi.org/10.1046/j.1469-8137.2002.00363.x
  10. Mirzaie, N., Reyhanitabar, A.,Oustan, S., and Hagighat Afshar, M. 2014. Effects of combined application of As and P on the growth characteristics and uptake of As and P by two wheat and marigold plants. Iranian Journal of Soil and Water Research, 45(3), pp. 353-367. (In Persian). https://doi.org/10.22059/ijswr.2014.52200
  11. Mirzaie, N., Reyhanitabar, A.,Oustan, S., and Hagighat Afshar, M. 2014. Interactive effects of arsenic and phosphorus on the uptake of calcium, magnesium and potassium by wheat (Triticum aestivum L.) and Marigold (Tagestes erecta). Applied Soil Research, 2(1), pp. 43-58. (In Persian). https://doi.org/10.22059/ijswr.2014.52200
  12. Moreno-Jiménez, E., Esteban, E., and Peñalosa, J. M. 2012. The fate of arsenic in soil-plant systems. Reviews of environmental contamination and toxicology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1463-6_1
  13. Nadiri, A., Asghari Moghaddam, A., Sadeghi, F. and Aghaee, H. 2012. Investigation of arsenic anomalies in water resources of Sahand dam. Journal of Environmental studies, 38(3), 61-74. (In Persian).https://doi.org/10.22059/jes.2012.29149
  14. Nagodavithane, C. L., Singh, B., & Fang, Y. 2014. Effect of ageing on surface charge characteristics and adsorption behaviour of cadmium and arsenate in two contrasting soils amended with biochar. Soil Research, 52 (2), pp. 155-163.

http://dx.doi.org/10.1071/SR13187

  1. Naidu, R., Bolan, N.S and Owens, G. 2003. Risk based land management: A cost effectivetool for contaminated land management. Pp. 5–19. In: Currie LD, Stewart RB andAnderson CWN (eds). Environmental Management using Soil–Plant Systems, Occasional Report No. 16. Fertilizer and Lime Research Centre, Massey University, Palmerston North.
  2. Naidu, R., 2006. Managing Arsenic in the Environment from Soil to Human Health. CSIRO Publishing. Australia
  3. Namgay, T., Singh, B., and Singh, B. P. 2010. Influence of biochar application to soil on the availability of As, Cd, Cu, Pb, and Zn to maize (Zea mays L.). Soil Research, 48 (7), pp. 638-647. http://dx.doi.org/10.1071/SR10049
  4. Naseri, E., Reyhanitabar, A., Oustan, S., Heydari, A.,and Alidokht, L.,2014. Optimization arsenic immobilization in a sandy loam soil using iron-based amendments by response surface methodology. Geoderma, 232, pp.547-555.

https://doi.org/10.1016/j.geoderma.2014.06.009

  1. Ohtsuka, T., Yamaguchi, N., Makino, T., Sakurai, K., Kimura, K., Kudo, K., & Amachi, S. 2013. Arsenic dissolution from Japanese paddy soil by a dissimilatory arsenate-reducing bacterium Geobacter sp. OR-1. Environmental Science & Technology, 47(12), pp. 6263-6271. http://dx.doi.org/10.1021/es400231x
  2. Pais, I. and Jones Jr, J. B. 1997. The Handbook of Trace Elements (First Edition). Bosa Roca, United States: Taylor and Francis Inc.
  3. Pierce, M.L. and Moore, C.B. 1982. Adsorption of arsenite and arsenate on amorphous iron hydroxide. Water Research, 16, pp. 1247-1253. https://doi.org/10.1016/0043-1354(82)90143-9
  4. Polemio, M.,Senesi, N. and Bufo, S.A. 1982. Soil contamination by metals. A survey in industrial and rural areas of sonthem Italy. Science of the Total Environment, 25, pp. 71-79. http://dx.doi.org/10.1016/0048-9697(82)90043-2
  5. Qiu, J., Souza, M.F., Wang, X., Chafik, Y., Morabito, D., Ronsse, F., Sikok, Y., and Meers, E. 2024. Dynamic performance of combined biochar from co-pyrolysis of pig manure with invasive weed: Effect of natural aging on Pb and As mobilization in polluted mining soil. Science of the Total Environment, 935, pp. 173424.

 https://doi.org/10.1016/j.scitotenv.2024.173424

  1. Rajapaksha, A. U., Vithanage, M., Lim, J. E., Ahmed, M. B. M., Zhang, M., Lee, S. S., and Ok, Y. S. 2014. Invasive plant-derived biochar inhibits sulfamethazine uptake by lettuce in soil. Chemosphere, 111, pp. 500-504.

 https://doi.org/10.1016/j.chemosphere.2014.04.040

  1. Rajapaksha, A. U., Chen, S. S., Tsang, D. C., Zhang, M., Vithanage, M., Mandal, S., and Ok, Y. S. 2016. Engineered/designer biochar for contaminant removal/immobilization from soil and water: potential and implication of biochar modification. Chemosphere, 148, pp. 276-291. https://doi.org/10.1016/j.chemosphere.2016.01.043
  2. Reyhanitabar, A., Farhadi, E., Ramezanzadeh, H., and Oustan S. 2020. Effect
  3. of pyrolysis temperature and feedstock sources on physicochemical characteristics of biochar. Journal of Agricultural Science and Technology, 22(2), pp. 547–561. http://dorl.net/dor/20.1001.1.16807073.2020.22.2.21.9
  4. Rinklebe, J., Shaheen, S. M., & Frohne, T. 2016. Amendment of biochar reduces the release of toxic elements under dynamic redox conditions in a contaminated floodplain soil. Chemosphere, 142, pp. 41-47. https://doi.org/10.1016/j.chemosphere.2015.03.067
  5. Sadiq, M. 1997. Arsenic chemistry in soils: An overview of thermodynamic predictions and field observations. Water Air and Soil Pollution, 93, pp. 117–136. https://doi.org/10.1007/BF02404751
  6. Samsuri, A. W., Sadegh-Zadeh, F., & Seh-Bardan, B. J. 2013. Adsorption of As (III) and As (V) by Fe coated biochars and biochars produced from empty fruit bunch and rice husk. Journal of Environmental Chemical Engineering, 1 (4), pp. 981-988.

http://dx.doi.org/10.1016/j.jece.2013.08.009

  1. Sepehr, E., and Shiriazar, M.A. 2020. Methods of arsenic decontamination of soil and water. Applied Soil Research, 8(4), pp. 69-84. (In Persian)
  2. Shiriazar, M.A., Sepehr E, Maleki R, Khodaverdiloo, H, Asadzadeh and Dovlati, B.2020. Removal of arsenate from aqueous solutions using iron-modified biochar. Journal of Water and Soil Conservation, 27(2), pp.126-143. (In Persian)
  3. Smedley, P.L. and Kinniburgh, D.G. 2002. A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 17, pp. 517-568. https://doi.org/10.1016/S0883-2927(02)00018-5
  4. Smith, E., Naidu, R. and Alston, A. M. 1998. Arsenic in the soil environment: A review. Advances in Agronomy, 64, pp.149–195.

https://doi.org/10.1016/S0065-2113(08)60504-0

  1. Stefanakis, M. and Kontopoulos, A. 1988. Production of environmentally acceptable arsenites-arsenates from solid arsenic trioxide. In “Arsenic Metallurgy, Fundamentals and Applications” (Reddy, Hendrix, and Queneau, Eds. Metallurgy Society. Pp, 287–304.
  2. Steiner, C., Teixeira, W. G., Lehmann, J., Nehls, T., de Macêdo, J. L. V., Blum, W. E., and Zech, W. 2007. Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant and Soil, 291 (1-2), pp. 275-290. https://doi.org/10.1007/s11104-007-9193-9
  3. Sun, X. and Doner, H. E., 1996. An investigation of arsenate and arsenite bonding structures on goethite by FTIR. Soil Science, 161, pp. 865-872.

 http://dx.doi.org/10.1097/00010694-199612000-00006

  1. Tan, X., Liu, Y., Zeng, G., Wang, X., Hu, X., Gu, Y., & Yang, Z. 2015. Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere,125, pp. 70-85. https://doi.org/10.1016/j.chemosphere.2014.12.058
  2. Thanabalasingam, P. and Pickering, W.F. 1986. Arsenic sorption by humic acids. Environmental Pollution, 12, pp. 233-246.

https://doi.org/10.1016/0143-148X(86)90012-1

  1. Tytłak, A., Oleszczuk, P., and Dobrowolski, R. 2015. Sorption and desorption of Cr (VI) ions from water by biochars in different environmental conditions. Environmental Science and Pollution Research, 22 (8), pp. 5985-5994.

http://dx.doi.org/10.1007/s11356-014-3752-4

  1. Van Vinh, N., Zafar, M., Behera, S. K., and Park, H. S. 2015. Arsenic (III) removal from aqueous solution by raw and zinc-loaded pine cone biochar: equilibrium, kinetics, and thermodynamics studies. International Journal of Environmental Science and Technology, 12 (4), pp. 1283-1294. http://dx.doi.org/10.1007/s13762-014-0507-1
  2. Vithanage, M., Herath, I., Joseph, S., Bundschuh, J., Bolan, N., Ok, Y. S., and Rinklebe, J., 2017. Interaction of arsenic with biochar in soil and water: a critical review. Carbon, 113, pp. 219-230. https://doi.org/10.1016/j.carbon.2016.11.032
  3. Wang, S., and Mulligan, C. 2006. Occurrence of arsenic contamination in Canada: sources, behavior, and distribution. Science Total Environ, 366, pp.701-721.

https://doi.org/10.1016/j.scitotenv.2005.09.005

  1. Wang, N., Xue, X. M., Juhasz, A. L., Chang, Z. Z., and Li, H. B. 2017. Biochar increases arsenic release from an anaerobic paddy soil due to enhanced microbial reduction of iron and arsenic. Environmental Pollution, 220, pp. 514-522.

https://doi.org/10.1016/j.envpol.2016.09.095

  1. 2023.Arsenic in drinking water.

http://www.who.int/mediacentre/factsheets/fs210/en/

  1. Xu, H., Allard, B. and Grimvall, A. 1988. Influence of pH and organic substance on the adsorption of As (V) on geologic materials. Water Air and Soil Pollution, 40, pp. 293–305. https://doi.org/10.1007/BF00163734
  2. Yamamura, S., and Amachi, S. 2014. Microbiology of inorganic arsenic: from metabolism to bioremediation. Journal of Bioscience and Bioengineering, 118(1), 1-9.

https://doi.org/10.1016/j.jbiosc.2013.12.011

  1. Yan-Chu, H. 1994. Arsenic distribution in soils. In “Arsenic in the Environment, Part I: Cycling and Characterization” (J. O. Nriagu, Ed.), Wiley, New York. pp. 17–49.
  2. Zhang, M., Gao, B., Varnoosfaderani, S., Hebard, A., Yao, Y., and Inyang, M. 2013. Preparation and characterization of a novel magnetic biochar for arsenic removal. Bioresource Technology, 130, pp. 457-462.

http://dx.doi.org/10.1016/j.biortech.2012.11.132

  1. Zhang, Q. Z., Dijkstra, F. A., Liu, X. R., Wang, Y. D., Huang, J., and Lu, N. 2014. Effects of biochar on soil microbial biomass after four years of consecutive application in the north China plain. PloS One, 9(7), pp. 201-206. https://doi.org/10.1371/journal.pone.0102062
  2. Zhang, W., Zheng, J., Zheng, P., Tsang, D. C., and Qiu, R. 2015. Sludge-derived biochar for arsenic (III) immobilization: effects of solution chemistry on sorption behavior. Journal of Environmental Quality, 44(4), pp. 1119-1126.

 https://doi.org/10.2134/jeq2014.12.0536

  1. Zhang, , Yoora, Cho., Meththika, V., Sabry, M., Shaheen, J. R., Daniel, S., Alessi ,C.H. H, Yohey, H., Piumi, A. W and Yong S.O. 2022. Arsenic removal from water and soils using pristine and modified biochars. Arsenic removal from water and soils using pristine and modified biochars. Biochar, 4(55), pp.1-26. https://doi.org/10.1007/s42773-022-00181-y