Equations and methods employed to estimate soil displacement due to tillage operations(A case study of Chehelgazi Sub-basin, Kurdistan Province)

Document Type : Research Paper

Authors

1 Ph.D. Student, Department of Watershed Management Engineering, Faculty of Natural Resources, Gorgan University of Agricultural Sciences and Natural Resource (GUASNR), Iran.

2 Associate Professor of Watershed Management, Gorgan University of Agricultural Sci.& Natural Resources, Gorgan, Golestan Province, Iran

Abstract

Natural resources comprise principal ingredients of human life and require special consideration of their potentials and realities within a comprehensive and integrated framework; such an outlook might be only achieved through a disciplined planning and management system. Resource exploitation in the absence of due attention to sustainability principles will lead to irreparable or costly effects. Using the land use map of 2014, the present study employed GIS to estimate soil displacement due to tillage operations in an attempt to develop planning schemes, making managerial decisions, and implementing projects to reduce soil displacement rates across the dry farms in Chehelgazi sub-basin. For this purpose, the land use and sloping maps of the dry farms in the region were prepared and the type of tillage tools (plow and chisel) used were identified using the exiting data and field visits. Subsequently, soil displacement equations were developed according to the type of tools used and soil displacement estimates in the region were obtained. The results showed the high potential of tillage erosion and soil displacement due to the large area under dryland farming in this sub-basin so that the average longitudinal soil displacement due to reversible plough operation as the dominant practice in the basin was estimated to range from 1.40 to 44.53 m. The importance of tillage operations and soil erosion as well as the role of the sub-basin in supplying water to Gheshlagh dam require more decisive actions to reduce soil movement and to monitor and improve the agricultural system in Kurdistan Province and across the whole state.

Keywords


  1. شرکت مهندسی مشاور سازه آب شفق، 1393. گزارش مطالعات ارزیابی اجرایی و اثربخشی پروژه­های آبخیزداری حوزه آبخیز پارسل A سد قشلاق سنندج (6 فصل)، اداره کل منابع طبیعی و آبخیزداری استان کردستان ، ص: 469-1.
  2. سیدالعلماء، س.ن، اسدی، ح، زواره، م، 1394. اثر فرسایش شخم بر میزان جابجایی و توان تولید خاک (مطالعه موردی: توتکابن در استان گیلان)، تحقیقات آب‌وخاک ایران، دوره 46، شماره 4، ص: 780-769.
  3. 3صادقی، ح.ر، غلامی، ل، خالدی درویشان، ع، 1386. مقایسه روش­های برآورد نسبت تحویل رسوب رگبار در حوزه آبخیز چهل­گزی سد قشلاق استان کردستان، مجله علوم و صنایع کشاورزی، ویژه آب‌وخاک، جلد 22، شماره 1، ص: 150-141.
  4. نی­نیوا، س.پ، شاهدی، ک، زاهدی، ص، انتظامی، ه. 1399. سهم برآورد رواناب ناشی از ذوب برف در تأمین نیاز آبی اراضی زراعی زیرحوضه چهل­گزی، استان کردستان، نشریه علمی-پژوهشی مهندسی و مدیریت آبخیز، جلد 12، شماره 4، ص: 976-962.
  5. Blanco, H., & Lal, R. (2008). Principles of soil conservation and management (Vol. 167169). New York: Springer.‏
  6. Busari,A., Surinder,K,. Amanpreet, K., Rajan , B and Ashura , D. (2015). Conservation tillage impacts on soil, crop and the environment. International Soil and Water Conservation Research3 (2015)119–129.  
  7. Hösl, R., & Strauss, P. (2016). Conservation tillage practices in the alpine forelands of Austria—Are they effective?. Catena, 137, 44-51.‏
  8. Kladivko EJ (2001) Tillage systems and soil ecology. Soil till Res 61(1-2): 61–76. Doi: 10.1016/S0167-1987(01)00179-9.
  9. Kosmas C, Gerontidis S, Marathianou M (2001) the effects of tillage displaced soil on soil properties and wheat biomass. Soil Tillage Res 58:31–44.
  10. Kouselou, M., Hashemi, S., Eskandari, I., McKenzie, B. M., Karimi, E., Rezaei, A., & Rahmati, M. (2018). Quantifying soil displacement and tillage erosion rate by different tillage systems in dryland northwestern Iran. Soil Use and Management, 34(1), 48-59.‏
  11. Lee, S., Chu, M. L., Guzman, J. A., & Botero-Acosta, A. (2021). A comprehensive modeling framework to evaluate soil erosion by water and tillage. Journal of Environmental Management, 279, 111631.‏
  12. Nyssen J, Poesen J, HaileMet al. (2000) Tillage erosion on slopes with soil conservation structures in the Ethiopian highlands. Soil Tillage Res 57:115–127.
  13. Quine TA, Zhang Y (2004) Re-defining tillage erosion: quantifying intensity-direction relationships for complex terrain. 1. Derivation of an adirectional soil transport coefficient. Soil Use Manage 20:114–123.
  14. Rosner, J., Zwatz, E., Klik, A., Gyuricza, C., 2008. Conservation tillage systems soil nutrient and herbicide loss in lower Austria and the mycotoxin problem. Substance 2(1.0), 0–6.
  15. St Gerontidis DV, Kosmas C, Detsis B et al. (2001) the effect of moldboard plow on tillage erosion along a hillslope. J Soil Water Conserv 56:147–152.
  16. Strauss, P., Klaghofer, E., 2001. Effects of soil erosion on soil characteristics and productivity. Aust. J. Agric. Res. 52 (2), 147–153.
  17. Van den Putte, A., Govers, G., Diels, J., Gillijns, K., Demuzere,M., (2010). Assessing the effect of soil tillage on crop growth: a meta-regression analysis on European crop yields under conservation agriculture. Eur. J. Agron. 33, 231–241.
  18. Van Muysen W, Govers G, Van Oost K (2002) Identification of important factors in the process of tillage erosion: The case of mouldboard tillage. Soil Tillage Res 65:77–93.
  19. Van Muysen W, Govers G, Van Oost K et al. (2000) the effect of tillage depth, tillage speed, and soil condition on chisel tillage erosivity. J Soil Water Conserv 55:355–364.
  20. Van Muysen W, Van Oost K, Govers G (2006) Soil translocation resulting from multiple passes of tillage under normal field operating conditions. Soil Tillage Res 87:218–230.
  21. Wang, Z,. Liu. L,. Chen, Q,. Wen, X and Liao, Y. (2016). Conservation tillage increases soil bacterial diversity in the dryland of northern China. Agron. Sustain. Dev. (2016) 36: 28.