Using the best-worst method and AHP to assign land priority for date palm cultivation in Jahrom Region, Fars

Document Type : ترویجی

Authors

1 Assistant Prof., Soil and Water Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran

2 1Assistant Prof., Soil and Water Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran;

3 Assistant Prof., Soil and Water Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran; E-mail: nasernavidi@yahoo.com

4 Ph.D. in Operations Research and Lecturer at the University of Tehran; E-mail: behzadminaei@ut.ac.ir

Abstract

Land use priority assessment is the principal basis of land use planning and management. It is a kind of decision-making with several criteria that sometimes contradict each other. This is why multi-criteria decision making (MCDM) methods have in recent years found wide applications in solving land suitability assessment problems. The objective of this study was to introduce the Best-Worst Method (BWM) and its application in determining the suitability of land for agricultural crop production. Furthermore, the results obtained were compared with those reported in previous studies that had employed the analytical hierarchy process (AHP) as the most widely used multi-criteria decision-making method. For this purpose, soil profile samples were taken from 12 orchards under date cultivation in Jahrom region, Fars Province and subjected to the necessary physicochemical analyses to identify the soil properties affecting crop yield. Once the soil and yield data matrices had been prepared, the BWM and AHP methods were used to determine the weight of each criterion. Land suitability index was subsequently obtained for each garden as the sum of the products of the standardized value of each soil property by its weight. The indices thus obtained were compared with the corresponding actual crop yield to determine the performance of the models employed. Although the results indicated almost identical index values from both methods, the evaluation criteria of minimum violation, total deviation, and conformity revealed more consistent BWM judgments. It was finally concluded that BWM could be recommended as a more reliable and efficient method for solving multi-criteria decision-making problems as required in land use management owing to its varied advantages such as the need for fewer pairwise comparisons compared to other matrix-based MCDM methods like AHP, more consistent and compatible weights ultimately derived in the decision-making problem, the possibility for its application simultaneously with other methods, the use of integers in comparisons, and ease of application.

Keywords


  1. اسکندری، م.، ع. زین­الدینی، م.ن. نویدی، و آ. سلمان­پور. 1401. بررسی کارآیی روش TOPSIS در اولویت‌بندی اراضی برای کشت زعفران. آب و خاک، 36(2): 237-249.
  2. اسکندری، م.،م. همایی، و ا. فلامکی. 1393. روشی نوین در جایابی خاک‌چال‌ها بر پایه تعیین شاخص کیفیت خاک. علوم محیطی، 12(3): 16-23.
  3. اسکندری، م.، م. همایی، و ش. محمودی. 1392. روشی بهینه برای تعیین مکان مناسب دفن زباله­های جامد شهری با کاربرد تحلیل چندمعیاره وGIS. علوم محیطی، 11(3): 41-54.
  4. بصیرت، م.، ع. زین­الدینی، ر. کلیایی، ر. فامیل مومن، ع. تراهی، ع.ر. شفیعی زرگر، ع. فرهادی، ا. شریفی عاشورآبادی، ص. صادقی و ا.ح. آقااحمدی. 1397. گزارش بازدید از استان بوشهر )آب و خاک، نخیلات، مرکبات، گلخانه، گیاهان دارویی(. معاونت امور باغبانی، سازمان جهاد کشاورزی.
  5. ثروتی، م.، ح.ر. ممتاز، ح. رضائی، و م. پیشنماز احمدی. 1396.ارزیابی تناسب اراضی منطقه هشترود با فرآیند تحلیل سلسله مراتبی فازی برای تیپ بهره­وری نخود آبی. مجله مدیریت خاک و تولید پایدار، 7(3): 153-166.
  6. دیالمی، ح.، ج. گیوی، م. نادری خوراستگانی، م. احمدپور و ر. تقی­زاده مهرجردی. 1396. ارزیابی تناسب اراضی برای کاشت نخل خرمای رقم کبکاب (Phoenix dactylifera L.cv Kabkob) در استان بوشهر با استفاده از فرآیند تحلیل سلسله مراتبی(AHP). مجله مدیریت خاک و تولید پایدار، 7(2): 25-45.
  7. زین­الدینی، ع.، ع.ر. سیدجلالی، م.ن. نویدی، م. اسکندری،ج. سیدمحمدی، ح. دیالمی، ا. مقیمی، وم. پوزش شیرازی. 1399. تدوین جدول نیازهای رویشی خاک و زمین­نما برای خرما به منظور استفاده در ارزیابی تناسب اراضی. مجله پژوهش‌های حفاظت آب و خاک، 27(5): 89-107.
  8. سبحانی، ب. و م. فرامرزی. 1395. استفاده از روش ویکور برای سنجش تناسب اراضی برای کشت زعفران در محیط ساج (مطالعه موردی شهرستان ملایر). جغرافیا و برنامه­ریزی، 20(56): 171-191.
  9. سواری، م. 1398. بررسی نگرش کشاورزان شهرستان دیوان­دره نسبت به مدیریت پایدار خاک. مدیریت اراضی، 7(2): 115-127.
  10. فتاحی، م.م.، ر. مهدوی، م. رضایی، و ی. اسماعیل پور. 1399. تعیین الگوی بهینه کشت گیاهان دارویی با استفاده از مدل ترکیبیTOPSIS-AHP مطالعه موردی: استان قم. تحقیقات گیاهان دارویی و معطر ایران، 36(6): 885-897.
  11. فتحی، ر.، م.ا. آسودار، و م. قاسمی­نژاد رائینی. 1400. مروری بر وضعیت کشاورزی حفاظتی در جهان با تمرکز بر یکی از کشورهای موفق. مدیریت اراضی، 9(1): 87-101.
  12. فلامکی، ا، . م. اسکندری. 1392. مکان­یابی مناسب­ترین محل دفن زباله­های جامد شهر یاسوج با روش تحلیل چند معیاره. سلامت کار ایران، ۱۰(5): 44-55.
  13. Bagherzadeh, A. and A. Gholizadeh. 2016. Modeling land suitability evaluation for wheat production by parametric and TOPSIS approaches using GIS, northeast of Iran. Modeling Earth Systems and Environment. 2(126). https://doi.org/10.1007/s40808-016-0177-8.
  14. Bagherzadeh, A. and A. Gholizadeh. 2017. Parametric-based neural networks and TOPSIS modeling in land suitability evaluation for alfalfa production using GIS. Modeling Earth Systems and Environment, 3(2): 1-11. https://doi.org/10.1007/s40808-016-0263-y.
  15. Dehghan Rahimabadi, P., H. Azarnivand, H. Khosravi, G. Zehtabian, A. Moghaddam Nia. 2021. An ecological agricultural model using fuzzy AHP and PROMETHEE II approach. DESERT, 26(1): 71-83.
  16. Ecer, F. 2021. Sustainability assessment of existing onshore wind plants in the context of triple bottom line: a best-worst method (BWM) based MCDM framework. Environmental Science and Pollution Research, 28: 19677–19693.
  17. Everest, T., A. Sungur and H. Ozcan. 2022. Applying the Best–Worst Method for land evaluation: a case study for paddy cultivation in northwest Turkey. International Journal of Environmental Science and Technology, 19: 3233–3246.
  18. Kazemi, H., and H. Akinci. 2018. A land use suitability model for rainfed farming by Multi-criteria Decision-making Analysis (MCDA) and Geographic Information System (GIS). Ecological Engineering 116: 1-6.
  19. Kheybari, S., M. Kazemi and J. Rezaei. 2019. Bioethanol facility location selection using best-worst method. Applied Energy, 242: 612-623.
  20. Liu, P., B. Zhu and P. Wang. 2021. A weighting model based on best–worst method and its application for environmental performance evaluation. Applied Soft Computing, 103: 107168.
  21. Maulana H. and H. Kanai. 2021. Land Suitability Evaluation by Integrating Multi-criteria Decision-Making (MCDM), Geographic Information System (GIS) Method, and Augmented Reality-GIS. In: Czarnowski I., Howlett R.J., Jain L.C. (eds) Intelligent Decision Technologies. Smart Innovation, Systems and Technologies, vol 238. Springer, Singapore. https://doi.org/10.1007/978-981-16-2765-1_26.
  22. Mendas, A. and A Delali. 2012. Integration of Multi Criteria Decision Analysis in GIS to develop land suitability for agriculture: Application to durum wheat cultivation in the region of Mleta in Algeria, Computers and Electronics in Agriculture, 83: 117-126.
  23. Mi, X., M. Tang, H. Liao, W. Shen, and B. Lev 2019. The state-of-the-art survey on integrations and applications of the best worst method in decision making: Why, what, what for and what's next? Omega, (87): 205-225.
  24. Munier, N., E. Hontoria and F. Jiménez-Sáez. 2019. Strategic Approach in Multi-Criteria Decision Making. Springer.
  25. Ostovari, Y., A. Honarbakhsh, H. Sangoony, F. Zolfaghari, K. Maleki and B. Ingram. 2019. GIS and multi-criteria decision-making analysis assessment of land suitability for rapeseed farming in calcareous soils of semi-arid regions, Ecological Indicators, 103: 479-487.
  26. Pilevar, A.R., H.R. Matinfar, A. Sohrabi and F. Sarmadian. 2020. Integrated fuzzy, AHP and GIS techniques for land suitability assessment in semi-arid regions for wheat and maize farming, Ecological Indicators (110), 105887 https://doi.org/10.1016/j.ecolind.2019.105887.
  27. Rezaei, J. 2015. Best-worst multi-criteria decision-making method. Omega, 53: 49-57.
  28. Rezaei, J. 2016. Best-worst multi-criteria decision-making method: Some properties and a linear model. Omega, 64: 126-130.
  29. Saaty, T.L. 2008. Decision making with the analytic hierarchy process. International Journal of Services Sciences, 1: 83–98.
  30. Seyedmohammadi, J., F. Sarmadian, A.A. Jafarzadeh and R.W. McDowell. 2019. Integration of ANP and Fuzzy set techniques for land suitability assessment based on remote sensing and GIS for irrigated maize cultivation. Archives of Agronomy and Soil Science, 65(8): 1063-1079.
  31. Seyedmohammadi, J., F. Sarmadian, A.A. Jafarzadeh and R.W. McDowell. 2019. Development of a model using matter element, AHP and GIS techniques to assess the suitability of land for agriculture, Geoderma, 352: 80-95.
  32. Seyedmohammadi, J., F. Sarmadian, A.A. Jafarzadeh, M.A. Ghorbani and F. Shahbazi. 2018. Application of SAW, TOPSIS and fuzzy TOPSIS models in cultivation priority planning for maize, rapeseed and soybean crops. Geoderma, 310: 178-190.
  33. Sys, C., E. Van Ranst, and J. Debaveye. 1991. Land evaluation, Part II: methods in land evaluation. Agricultural Publication No. 7, G.A.D.C., Brussels, Belgium.
  34. Sys, C., E. Van Ranst, and J. Debaveye. 1993. Land evaluation, Parts III: Crop Requirements. General administration for development cooperation agricultural. Brussels, Belgium.
  35. 2012. Field Book for Describing and Sampling Soils. Version 3, Natural Resources Conservation Service, National Soil Survey Center, Lincoln, NE.
  36. 2014. Kellogg Soil Survey Laboratory Methods Manual. Soil Survey Investigations Report No. 42, Version 5. R. Burt and Soil Survey Staff (ed.). United States Department of Agriculture, Natural Resources Conservation Service.
  37. Zhao, L., H. Li, Z. Wang, D. Peng, Y. Xue and X. Ai. 2020. Comprehensive evaluation of power grid security and benefit based on BWM entropy weight TOPSIS method. IOP Conference Series: Earth and Environmental Science, 619: 012053.