نوع مقاله : فنی ترویجی
نویسندگان
1 عضو هیات علمی موسسه تحقیقات خاک و آب
2 عضو هیات علمی موسسه تحقیقات خاک و آب.
3 کارشناس ارشد موسسه تحقیقات خاک و آب
چکیده
کلیدواژهها
عنوان مقاله [English]
نویسندگان [English]
Carbonatic origin of most arable land in the country, caused to decrease phosphatic fertilizer use efficiency and because of this phenomenon, farmers annually add a large amount of these chemical compounds to their field to get proper results. International shortage and increasing prices create some problems for importing phosphorus fertilizers to the country. On the other hand using more and more of these compounds caused environmentally pollutions .By changing unavailable forms of soil concentrated phosphorus to the available forms, in parallel to lower need of phosphatic fertilizers, plant growth and yield also can be guaranteed .In rhizospheric soil some of microorganisms including bacteria and fungi have ability to change soil fixed phosphorus to soluble one by specific mechanisms. Isolation, recognition, their production and formulation of these microorganisms constitute the main frame of production of a kind of biofertilizers which is named phosphatic biofertilizers. In developed countries, the new formulations of these biofertilizers contain different kinds of microorganisms for multiple purpose including supply plant mineral needs and help to their host to be more resistant against biotic and abiotic stresses. These kinds of biofertilizers including sulfur oxidizing, phosphate solubilizers and mycorrhizal fungi were used in the country from 10 years ago. Research results showed that these microorganisms efficiencies are in relation to plant host and soil physical and chemical properties. In over all they can supply 25 to 50 percent of plant phosphorus demand. Trying to use modern technologies to produce these microorganisms and their formulation caused to develop using them in the country and help us to decrease usage of phosphatic chemical fertilizers.
کلیدواژهها [English]
23. Ahmed, S. 1995. Agriculture-Fertilizer Interface in Asia-Issues of Growth and sustainability. Oxfeor and IBH Publ. Co. New Delhi.
24. Clark, R. B., and S. K. Zeto. 1996. Mineral acquisition by mycorrhizal maize grown on acid and alkaline soil. Soil Biology and Biochemistry. 28: 1405-1503.
25. Dalal, R. C. 1977. Soil Organic Phosphorus. Adv. Agron . 29: 83-117.
26. FAO, Current world fertilizer trends and out look to 2009/10.
27. Fortin, J. A., G. Becard, S. Declerck, Y. Dalpe, M. St-Arnaud, A. P. Coughlan, and Y. Piche, 2002. Arbuscular mycorrhiza on root-organ culture. Canadian. Journal of Botany. 80: 1-20.
28. Goldstein, A. H. 1986. Recent progress in understanding the molecular genetics and biochemistry of calcium phosphate solubilization by gram negative bacteria. Biological Agriculture and Horticulture. 12: 185- 193.
29. Goldstein, A. H., R. D. Rogresand, G. Mead. 1993. Mining by microbe. Bio/Technol. 11. 1250-1254.
30. Jakobsen, I. 1995. Transport of phosphorus and carbon in VA mycorrhiza In: Mycorrhiza, Structure, Function, Molecular Biology and Biotechnology. A. Varma and B. Hock (eds). Springer – Verlag. Berlin. PP. 297-324.
31. -Kabri, Z., I. P. P’Halloran, and C. Hamle. 1996. The proliferation of fungal hyphae in soils supporting mycorrhizal and nonmycorrhizal plants. Mycorrhiza 6:477-480.
32. Katznelson, H., E. A. Peterson, and J. W Rovatt. 1962. Phosphate dissolving microorganisms on seed and in the root zone of plants. Can. J. Bot. 40: 1181-1186.
33. Kirchner, M. J., A. G. Wollum, L. D. King, 1993. Soil microbial populations and activities in reduced chemical input agroecosystems. Soil. Soc. Amer. J. 57: 1289-1295.
34. -Kush, G. S. and J. Bennet. (eds). 1992. Nodulation and Nitrogen Fixation in Rice: Potential and Prospect. International Rice Research Institute, Manila Philippines.
35. Leisinger, K. M. 1999. Biotechnology and food security. Curr. Sci. 76:488-500.
36. Mirzakhani. M., M.R Ardekani, A. Aeene Band, F. Rejali, and A.H. Shirani Rad. 2009. Response of spring safflower to co –inoculation with Azotobacter chroococcum and Glomus intraradices under different level of nitrogen and phosphorus. American Journal of Agricultural and Biological Sciences 4(3): 255-261.
37. Rodriguez, H. and R. Frage. 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology Advances. 17: 319-339.
38. Sharma, A. K. and B. N. Johri. (eds.). 2002. Arbuscular Mycorrhizae, Interaction in Plants, Rhizosphere and Soils. Oxford and IBH Publishing. New Delhi. P. 308.
39. Stevenson, F. J. 1986. Cycles of Soil Carbon, Nitrogen, Phosphours, Sulfur, Micronutrients. Wiley. New York.
40. Verma, A., and A. Adholeya. 1996. Cost – economics of existing methodologies for inoculum production of vesicular-arbuscular mucorrhizal fungi In Mukkerji (ed.), Concept in Mycorrhizal Research. Kluwer Academic Publisher. P 179-194.
41. Vig, A. C., and G. Dev. 1984. Phosphorus adsorption characteristics of some acid and alkaline soils. J. Indian Soc. Soil Sci. 32, 235-239.
42. www.afkarnews.ir.
43. Zarea, M. J., A. Ghalavand, M. E. Goltapeh, and F. Rejali. 2008. Green manure, Mycorrhiza and soil fertility. American-Eurasian Journal of Sustainable Agriculture. 2 (3): 294-299.
44. Zarea, M.J., A. Ghalavand, M.E. Goltapeh, and F. Rejali. 2009. Effect of mixed cropping, earthworms, and arbuscular mycorrhizal fungi on plant yield, mycorrhizal colonization rate , soil microbial biomass, and nitrogenase activity of free-living bacteria. Pedobiologia. 52:223-235
45. Zarea, M.J., A. Ghalavand, M.E. Goltapeh, and F. Rejali. 2009. Interaction of mycorrhiza, earthworm and rhizobium on growth of annual medic under light stress. Journal of Agricultural Technology 5(2):249-259.
46. Zarea, M. J., A. Ghalavand, M. E. Goltapeh, and F. Rejali. 2009. Role of clover species and AM fungi on forage yield, nutrient uptake, nitrogenase activity and soil microbial biomass. Journal of Agricultural Technology. 5(2):337-347.