- Abdullah, A.Y.M., Masrur, A., Adnan, M.S.G., Baky, M., Al, A., Hassan, Q.K., Dewan, A. 2019. Spatio-Temporal Patterns of Land Use/Land Cover Change in the Heterogeneous Coastal Region of Bangladesh between 1990 and 2017. Remote Sensing, 11, 790. https://doi.org/10.3390/rs11070790
- Abera, T.A., Vuorinne, I., Munyao, M., Pellikka, P.K. and Heiskanen, J., 2022. Land cover map for multifunctional landscapes of Taita Taveta County, Kenya, based on Sentinel-1 radar, Sentinel-2 optical, and topoclimatic data. Data, 7(3): 36.
https://doi.org/10.3390/data7030036
- Ahangarha, M, Saadat Seresht, M, Shahhoseini, R, Seyyedi, S.T., 2020. Crop Land Change Monitoring Based on Deep Learning Algorithm Using Multi-temporal Hyperspectral Images. Journal of Geomatics Science and Technology, 10 (2): 79-89 (In Persian)
- Amani, M., Ghorbanian, A., Ahmadi, S.A., Kakooei, M., Moghimi, A., Mirmazloumi, S.M., Moghaddam, S.H.A., Mahdavi, S., Ghahremanloo, M., Parsian, S. and Wu, Q., 2020. Google earth engine cloud computing platform for remote sensing big data applications: A comprehensive review. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13: 5326-5350. https://doi.org/10.1109/JSTARS.2020.3021052
- Amani, M., Salehi, B., Mahdavi, S., Brisco, B., 2018. Spectral analysis of wetlands using multi-source optical satellite imagery. ISPRS J. Photogramm. Remote Sens. 144: 19-36. https://doi.org/10.1016/j.isprsjprs.2018.07.005 Awad, M.M., Alawar, B. and Jbeily, R., 2019. A new crop spectral signatures database interactive tool (CSSIT). Data, 4(2): 77. https://doi.org/10.3390/data4020077
- Deiss, L., Margenot, A.J., Culman, S.W. and Demyan, M.S., 2020. Tuning support vector machines regression models improves prediction accuracy of soil properties in MIR spectroscopy. Geoderma, 365: 114227. https://doi.org/10.1016/j.geoderma.2020.114227
- GaoC., 1996. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote sensing of environment. 58(3):257-66.
https://doi.org/10.1016/S00344257 (96)00067-3
- Ghayour, L.; Neshat, A.; Paryani, S.; Shahabi, H.; Shirzadi, A.; Chen,W.; Al-Ansari, N.; Geertsema, M.; Pourmehdi Amiri, M.; Gholamnia, M., 2021. Performance Evaluation of Sentinel-2 and Landsat 8 OLI Data for Land Cover/Use Classification Using a Comparison between Machine Learning Algorithms. Remote Sens, 13, 1349.
https://doi.org/10.3390/rs13071349
- Ghorbanian, A., Kakooei, M., Amani, M., Mahdavi, S., Mohammadzadeh, A. and Hasanlou, M., 2020. Improved land cover map of Iran using Sentinel imagery within Google Earth Engine and a novel automatic workflow for land cover classification using migrated training samples. ISPRS Journal of Photogrammetry and Remote Sensing, 167: 276-288. https://doi.org/10.1016/j.isprsjprs.2020.07.013
- Gurung, R.B., Breidt, F.J., Dutin, A. and Ogle, S.M., 2009. Predicting Enhanced Vegetation Index (EVI) curves for ecosystem modeling applications. Remote Sensing of Environment, 113(10): 2186-2193. https://doi.org/10.1016/j.rse.2009.05.015
- Holtgrave, A.K., Röder, N., Ackermann, A., Erasmi, S. and Kleinschmit, B., 2020. Comparing Sentinel-1 and-2 data and indices for agricultural land use monitoring. Remote Sensing, 12(18): 2919. https://doi.org/10.3390/rs12182919
- Hu B, Xu Y, Huang X, Cheng Q, Ding Q, Bai L, Li Y., 2021. Improving urban land cover classification with combined use of sentinel-2 and sentinel-1 imagery. ISPRS International Journal of Geo-Information, 10(8):533. https://doi.org/10.3390/ijgi10080533
- Huang, S., Tang, L., Hupy, J.P., Wang, Y. and Shao, G., 2021. A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing. Journal of Forestry Research, 32(1): 1-6.
https://doi.org/10.1007/s11676-020-01155-1
- Immitzer, M., Vuolo, F., Atzberger, C., 2016. First Experience with Sentinel-2 Data for Crop and Tree Species Classifications in Central Remote Sens, 8: 166. https://doi.org/10.3390/rs8030166
- Kasaei zadegan, A.S., 2014. Drought analysis of Alborz province with SPI method, 1th international conference of Geographic science, Abadeh (In Persian).
- Kharazmi, R., Panidi, E.A. and Karkon, V.M., 2016. Assessment of dry land ecosystem dynamics based on time series of satellite images. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 13(5): 214-223 (In Russian).
- Kharazmi, R., Tavili, A., Rahdari, M.R., Chaban, L., Panidi, E. and Rodrigo-Comino, J., 2018. Monitoring and assessment of seasonal land cover changes using remote sensing: A 30-year (1987–2016) case study of Hamoun Wetland, Iran. Environmental monitoring and assessment, 190: 1-23. https://doi.org/10.1007/s10661-018-6726-z
- Koskinen, J., Leinonen, U., Vollrath, A., Ortmann, A., Lindquist, E., d'Annunzio, R., Pekkarinen, A., Käyhkö, N., 2019. Participatory mapping of forest plantations with Open Foris and Google Earth Engine. ISPRS Journal of Photogrammetry and Remote Sensing, 148:63-74. https://doi.org/10.1016/j.isprsjprs.2018.12.011
- Laban, N., Abdellatif, B., Ebeid, H.M., Shedeed, H.A. and Tolba, M.F., 2019. Machine learning for enhancement land cover and crop types classification. Machine learning paradigms: theory and application, 71-87. https://doi.org/10.1007/978-3-030-02357-7_4
- Madasa, A., Orimoloye, I.R. and Ololade, O.O., 2021. Application of geospatial indices for mapping land cover/use change detection in a mining area. Journal of African Earth Sciences, 175: 104108. https://doi.org/10.1016/j.jafrearsci.2021.104108
- Mohammad esmaeil,Z., 2010. Monitoring land use\ land cover changes in karaj by applying remote sensing. Iranian journal of soil research (formerly soil and water sciences), 24(1): 81-88 (In Persian).
- Mullissa, A., Vollrath, A., Odongo-Braun, C., Slagter, B., Balling, J., Gou, Y., Gorelick, N. and Reiche, J., 2021. Sentinel-1 SAR backscatter analysis ready data preparation in google earth engine. Remote Sensing, 13(10): 1954. https://doi.org/10.3390/rs13101954
- Nasiri, V., Deljouei, A., Moradi, F., Sadeghi, S.M.M. and Borz, S.A., 2022. Land use and land cover mapping using Sentinel-2, Landsat-8 Satellite Images, and Google Earth Engine: A comparison of two composition methods. Remote Sensing, 14(9): 1977. https://doi.org/10.3390/rs14091977
- Navidi, M.N., Asadi Rahmani, H., Chatrenour, M., Kharazmi, R., Jamshidi, M., Ziaee Javid, A., MohamadEsmaeil, Z., ebrahimi meymand, F, 2023. Changes in Agricultural Land Use as a Threat to Food Security, Land Management Journal, 11(2): 229-248 (In Persian).
- Piao, Y.; Jeong, S.; Park, S.; Lee, D., 2021. Analysis of Land Use and Land Cover Change Using Time-Series Data and Random Forest in North Korea. Remote Sensing, 13, 3501. https://doi.org/10.3390/rs13173501
- Polykretis, C., Grillakis, M.G., Alexakis, D.D., 2020. Exploring the impact of various spectral indices on land cover change detection using change vector analysis: A case study of Crete Island, Greece. Remote Sensing, 12(2): 319. https://doi.org/10.3390/rs12020319
- Rufin, P., Frantz, D., Ernst, S., Rabe, A., Griffiths, P., Özdo˘gan, M., Hostert, P., 2019. Mapping Cropping Practices on a National Scale Using Intra-Annual Landsat Time Series Binning. Remote Sensing, 11, 232. https://doi.org/10.3390/rs11030232
- Sang, X., Guo, Q., Wu, X., Xie, T., He, C., Zang, J., Qiao, Y., Wu, H. and Li, Y., 2021. The effect of DEM on the land use/cover classification accuracy of landsat OLI images. Journal of the Indian Society of Remote Sensing, 49: 1507-1518.
https://doi.org/10.1007/s12524-021-01318-5
- Schulz, D., Yin, H., Tischbein, B., Verleysdonk, S., Adamou, R. and Kumar, N., 2021. Land use mapping using Sentinel-1 and Sentinel-2 time series in a heterogeneous landscape in Niger, Sahel. ISPRS Journal of Photogrammetry and Remote Sensing, 178, pp.97-111. https://doi.org/10.1016/j.isprsjprs.2021.06.005
- Shafizadeh-Moghadam, H., Minaei, F., Talebi-khiyavi, H., Xu, T. and Homaee, M., 2022. Synergetic use of multi-temporal Sentinel-1, Sentinel-2, NDVI, and topographic factors for estimating soil organic carbon. Catena, 212: 106077.
https://doi.org/10.1016/j.catena.2022.106077
- Shojaeeian, A., Mokhtari Chelche, S., Keshtkar, L., Soleymani rad, E., 2015. Comparing the Performance of Parametric and NonparametricMethods in Land Cover Classification using Landsat-8 Satellite Images (Case study: A part of Dezful city), Scientific- Research Quarterly of Geographical Data (SEPEHR), 24(93): 53-64 (In Persian).
- Solórzano, J.V., Mas, J.F., Gao, Y. and Gallardo-Cruz, J.A., 2021. Land use land cover classification with U-net: Advantages of combining sentinel-1 and sentinel-2 imagery. Remote Sensing, 13(18): 3600. https://doi.org/10.3390/rs13183600
- Teluguntla, P., Thenkabail, P.S., Oliphant, A., Xiong, J., Gumma, M.K., Congalton, R.G., Yadav, K., Huete, A., 2018. A 30-m landsat-derived cropland extent product of Australia and China using random forest machine learning algorithm on Google Earth Engine cloud computing platform. ISPRS J. Photogramm. Remote Sens. 144: 325–340.
https://doi.org/10.1016/j.isprsjprs.2018.07.017
- Thanh Noi, P., Kappas, M., 2017. Comparison of Random Forest, k-Nearest Neighbor, and Support Vector Machine Classifiers for and Cover Classification Using Sentinel-2 Imagery. Sensors, 18, 18. https://doi.org/10.3390/s18010018
- Valero-Carreras, D., Aparicio, J. and Guerrero, N.M., 2021. Support vector frontiers: A new approach for estimating production functions through support vector machines. Omega, 104: 102490. https://doi.org/10.1016/j.omega.2021.102490
- Yang, J., Xu, J., Lv, Y., Zhou, C., Zhu, Y. and Cheng, W., 2023. Deep learning-based automated terrain classification using high-resolution DEM data. International Journal of Applied Earth Observation and Geoinformation, 118: 103249.
https://doi.org/10.1016/j.jag.2023.103249
- Zha, Y., Gao, J. and Ni, S., 2003. Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. International journal of remote sensing, 24(3): 583-594. https://doi.org/10.1080/01431160304987