تأثیر بیوچار و فسفر بر برخی خصوصیات زراعی گیاه کلزا و کارایی مصرف آب در یک خاک لوم قلیایی

نوع مقاله : پژوهشی

نویسندگان

1 کارشناسی ارشد علوم خاک، دانشکده کشاورزی، دانشگاه تبریز، تبریز، ایران

2 استاد گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه تبریز، تبریز، ایران

چکیده

این تحقیق با هدف بررسی تأثیر برهمکنش کود فسفر و بیوچار حاصل از کاه ‌گندم پیرولیز شده در دمای 300 درجه سلسیوس بر برخی خصوصیات زراعی و مورفولوژیکی گیاه کلزا (Brassica napus L.) رقم هایولا 308 در یک خاک لوم قلیایی در شرایط گلخانه­ای انجام شد. این آزمایش به­صورت فاکتوریل در قالب طرح کاملاً تصادفی با سه تکرار اجرا گردید. فاکتورهای آزمایش شامل ماده‌ آلی در پنج سطح (صفر، 20 و 40 گرم بر کیلوگرم خاک از دو منبع کاه گندم و بیوچار حاصل از آن) و فسفر در سه سطح (صفر، 20 و 40 میلی­گرم فسفر بر کیلوگرم خاک از منبع سوپرفسفات تریپل) بودند. قبل از برداشت گیاهان شاخص کلروفیل و سطح برگ اندازه­گیری شدند. بعد از برداشت گیاه نیز ماده خشک شاخساره، ریشه و دانه، کارایی مصرف آب، ارتفاع گیاه، قطر ساقه، حجم ریشه، تعداد غلاف، وزن هزار دانه، مقدار روغن دانه، غلظت و مقدار پروتیئن دانه اندازه­گیری شدند. نتایج نشان داد که مصرف بیوچار (در هر دو سطح دو و چهار درصد) و فسفر شاخص‌ کلروفیل برگ، ارتفاع گیاه، ماده خشک شاخساره، ریشه و دانه، تعداد غلاف، وزن هزار دانه، کارایی مصرف آب، مقدار پروتئین و روغن دانه را نسبت به شاهد به­طور معناداری افزایش داد، امّا مصرف کاه گندم سبب کاهش این خصوصیات به­جزء کارایی مصرف آب شد. تبدیل کاه گندم به بیوچار پیرولیز شده در دمای 300 درجه سلسیوس و مصرف آن در یک خاک لوم قلیایی نسبت به کاه گندم باعث بهبود خصوصیات رشد و مورفولوژیکی گیاه کلزا شد.

کلیدواژه‌ها


عنوان مقاله [English]

Effects of biochar and phosphorus on some agronomical traits of rapeseed (Brassica napus L.) and the associated water use efficiency in an alkaline loam soil

نویسندگان [English]

  • Soheil Salimi Trazoj 1
  • Adel Reyhanitabar 2
  • Nosratollah Najafi 2
1 MSc Student of Soil Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.
2 Professor, Department of Soil Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.
چکیده [English]

The effects of the combined application of biochar pyrolysed at 300 ˚C and phosphorous (P) fertilizer on some agronomical and morphological traits of the Hyola 308 cultivar of rapeseed (Brassica napus L.) as well as the associated water use efficiency were studied in an alkaline loam soil. For this purpose, a factorial experiment was conducted in a completely randomized design with three replicates. The factors were organic matter with two sources (biochar and wheat straw) at three levels (0, 20, and 40 g kg-1) and three levels of phosphorus (0, 20, and 40 mg kg-1 as triple superphosphate fertilizer). Prior to harvesting, leaf chlorophyll index and leaf area were measured while  shoot, root, and seed dry matter as well as water use efficiency, plant height, stem diameter, root volume, number of pods, one-thousand seed weight, seed oil content, and seed protein concentration were measured after the harvest.  The results showed that application of phosphorus and both levels (2% and 4% of biochar significantly increased leaf chlorophyll index, stem height, number of pods, one-thousand seed weight, water use efficiency, protein and seed oil contents as well as shoot, root, and seed dry matter contents compared to the control; application of wheat straw, however, led to decreases in these traits except for water use efficiency. Moreover, compared to the initial biomass, the biochar obtained from wheat straw pyrolyzed at 300 C in an alkaline loam soil improved rapeseed agronomical and morphological traits in an alkaline loam soil.  

کلیدواژه‌ها [English]

  • Biochar
  • Phosphorus fertilizer
  • Rapeseed
  • Wheat straw
  1. Agbna, G. H., Dongli, S., Zhipeng, L., Elshaikh, N. A., Guangcheng, S., and Timm, L. C., 2017. Effects of deficit irrigation and biochar addition on the growth, yield, and quality of tomato. Scientia Horticulturae, 222, pp. 90-101

https://doi.org/10.1016/j.scienta.2017.05.004

  1. Akhtar, S. S., Li, G., Andersen, M. N., and Liu, F., 2014. Biochar enhances yield and quality of tomato under reduced irrigation. Agricultural Water Management, 138, pp. 37-44. https://doi.org/10.1016/j.agwat.2014.02.016
  2. Alburquerque, J. A., Calero, J. M., Barrón, V., Torrent, J., Del Campillo, M. C., Gallardo, A., and Villar, R., 2014 .Effects of biochars produced from different feedstocks on soil properties and sunflower growth. Journal of Plant Nutrition and Soil Science, 177, pp. 16-25. https://doi.org/10.1002/jpln.201200652
  3. Alburquerque, J. A., Salazar, P., Barrón, V., Torrent, J., del Campillo, M. d. C., Gallardo, A., and Villar, R., 2013. Enhanced wheat yield by biochar addition under different mineral fertilization levels. Agronomy for Sustainable Development, 33, pp. 475-484. https://doi.org/10.1007/s13593-012-0128-3
  4. Amin, A. E.-E. A. Z., 2018. Phosphorus dynamics and corn growth under applications of corn stalks biochar in a clay soil. Arabian Journal of Geosciences, 11, pp. 379. https://doi.org/10.1007/s12517-018-3719-8
  5. Anderson, C. R., Condron, L. M., Clough, T. J., Fiers, M., Stewart, A., Hill, R. A., and Sherlock, R. R., 2011. Biochar induced soil microbial community change: implications for biogeochemical cycling of carbon, nitrogen and phosphorus. Pedobiologia, 54, pp. 309-320. https://doi.org/10.1016/j.pedobi.2011.07.005
  6. Atkinson, C. J., Fitzgerald, J. D., and Hipps, N. A., 2010. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant and Soil, 337, pp. 1-18. https://doi.org/10.1007/s11104-010-0464-5
  7. Bahrani, M., Raufat, M., and Ghadiri, H., 2007. Influence of wheat residue management on irrigatedcorn grain production in a reduced tillage system. Soil and Tillage Research, 94, pp. 305-309 .https://doi.org/10.1016/j.still.2006.08.004
  8. Ben-Gal, A., and Dudley, M., 2003. Phosphorus availability under continuous point sourceirrigation. Soil Science Society of America Journal, 67, pp. 1449-1456

. https://doi.org/10.2136/sssaj2003.1449

  1. Bhattarai, B., Neupane, J., and Dhakal, S. P., 2015. Effect of biochar from different origin on physio-chemical properties of soil and yield of garden pea (Pisum sativum) at Paklihawa, Rupandehi, Nepal. World Journal of Agricultural Research, 3, pp. 129-138. https://doi.org/10.12691/wjar-3-4-3
  2. Bose, T., 1957. Effect of nitrogen, phosphorus and potassium on growth, yield and oil content of mustard (Brassicajuncea). Indian Agriculturist, 1, pp. 29-38.
  3. Brennan, A., Jiménez, E. M., Puschenreiter, M., Alburquerque, J. A., and Switzer, C., 2014. Effects of biochar amendment on root traits and contaminant availability of maize plants in a copper and arsenic impacted soil. Plant and Soil, 379, pp. 351-360. https://doi.org/10.1007/s11104-014-2074-0
  4. Carter, S., Shackley, S., Sohi, S., Suy, T. B., & Haefele, S., 2013. The impact of biochar application on soil properties and plant growth of pot grown lettuce (Lactuca sativa) and cabbage (Brassica chinensis). Agronomy, 3, pp. 404-418.

 https://doi.org/10.3390/agronomy3020404

  1. Chan, K. Y., Van Zwieten, L., Meszaros, I., Downie, A., and Joseph, S., 2007. Agronomic values of greenwaste biochar as a soil amendment. Soil Research, 45, pp. 629-634. https://doi.org/10.1071/SR07109
  2. Cheema, M., Malik, M., Hussain, A., Shah, S., and Basra, S., 2001. Effects of time and rate of nitrogen and phosphorus application on the growth and the seed and oil yields of canola (Brassica napus). Journal of Agronomy and Crop Science, 186, pp. 103-110. https://doi.org/10.1046/j.1439-037X.2001.00463.x
  3. Dong, X., Ma, L. Q., & Li, Y., 2011. Characteristics and mechanisms of hexavalent chromium removal by biochar from sugar beet tailing. Journal of Hazardous Materials, 190, pp. 909-915. https://doi.org/10.1016/j.jhazmat.2011.04.008
  4. Egle, L., Zoboli, O., Thaler, S., Rechberger, H., and Zessner, M., 2014. The Austrian P budget as a basis for resource optimization. Resources, Conservation and Recycling, 83, pp. 152-162 https://doi.org/10.1016/j.resconrec.2013.09.009
  5. Fatahinejad, E., Siadat, A., Esfandiyari, M., Moghadasi, R., and Moezi, A., 2013. Effect of phosphorus fertilizer on yield, oil and canola protein in dry farming in different groups of soil phosphorus fertility. Crop physiology, 5, pp. 83-100. https://sid.ir/paper/174476/en
  6. Frišták, V., and Soja, G., 2015. Effect of wood-based biochar and sewage sludge amendments for soil phosphorus availability. Nova biotechnologica et chimica, 14, pp. 104-115. https://doi.org/10.1515/nbec-2015-0020
  7. Ghanai, S. 2014. The interaction effect of drought and phosphorus on rapeseed in Gonbad region. National Conference on Climate Change and Sustainable Agriculture, Tehran, Tolo Farzin Science and Industry Company. (In Persian). https://civilica.com/doc/282354
  8. Gee, G. W., and Bauder, J. W., 1986. Particle‐size analysis. Methods of soil analysis: Part 1 Physical and Mineralogical Methods, 5, pp. 383-411

. https://doi.org/10.2136/sssabookser5.1.2ed.c15

  1. Guo, Y., Tang, H., Li, G., and Xie, D., 2014. Effects of cow dung biochar amendment on adsorption and leaching of nutrient from an acid yellow soil irrigated with biogas slurry. Water, Air, & Soil Pollution, 225, pp. 1-13 . https://doi.org/10.1007/s11270-013-1820-x
  2. Havlin J. L., Beaton J. D., Tisdale S. L., and Nelson W. L., 1999. Soil Fertility and Fertilizers, 6 Ed. Soil Science Society of America. Madison, Wisc.
  3. Hoseini, Y., Homaee, M., Karimian, N.A., and Saadat, S., 2009. The effects of phosphorus and salinity on growth, nutrient concentrations, and water use efficiency in canola (Brassica napus). Agricultural Research, 8, pp. 1-18. (In Persian). https://sid.ir/paper/84857/en
  4. Jones, J. B., Laboratory guide for conducting soil tests and plant analysis: CRC press, Boca Raton, FL.
  5. Joseph, S. D., Camps-Arbestain, M., Lin, Y., Munroe, P., Chia, C., Hook, J., and Singh, B. 2010. An investigation into the reactions of biochar in soil. Soil Research, 48, 501-515. https://doi.org/10.1071/SR10009
  6. Lehmann, J., Gaunt, J., and Rondon, M., 2006. Bio-char sequestration in terrestrial ecosystems–a review. Mitigation and Adaptation Strategies for Global Change, 11, pp. 403-427. https://doi.org/10.1007/s11027-005-9006-5
  7. Lehmann, J., and Joseph, S., 2015. Biochar for Environmental Management: science, technology and implementation: Routledge.
  8. Lindsay, W. L., and Norvell, W., 1978. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society of America Journal, 42, pp. 421-428. https://doi.org/10.2136/sssaj1978.03615995004200030009x
  9. Lindsay, W. L., Vlek, P. L., and Chien , H., 1989. Phosphate minerals. Minerals in Soil Environments, 1, pp. 1089-1130. https://doi.org/10.2136/sssabookser1.2ed.c22
  10. Marschner, H., 2011. Marschner's mineral nutrition of higher plants: Academic press.
  11. Mbah, C., Njoku, C., Okolo, C., Attoe, E., and Osakwe, U., 2017. Amelioration of a degraded Ultisol with hardwood biochar: Effects on soil physico-chemical properties and yield of cucumber (Cucumis sativus L). African Journal of Agricultural Research, 12, pp. 1781-1792. https://doi.org/10.5897/AJAR2016. 11654
  12. Molla, M. S., Akhter, M., Maniruzzaman, M., Lipi, N. J., Rabiul, A., and Tisam, A., 2017. Response of biochar to plant nutrients and yield of Amaranthus tricolor. International Journal of Innovative Research, 2, pp.13–17.
  13. Nelson, D. W., and Sommers, L. E., 1983. Total carbon, organic carbon, and organic matter. Methods of soil analysis: Part 2 chemical and microbiological properties, 9, pp. 539-579. https://doi.org/10.2134/agronmonogr9.2.2ed.c29
  14. Olama, , Ronaghi, A., Karimian, N., Yasrebi, J., Hamidi, R., and Tavajjoh, M., 2014. Comparison of yield, yield components and seed quality (oil and protein content) of two rapeseed cultivars as affected by different levels of soil-applied nitrogen and zinc. Isfahan University of Technology, 4, pp. 83-98. (in Persian).
  15. Olsen, SR., and Sommer, LE., 1982. pp. 403-430. In: A.L. Page R.H. Miller and D.R. Keeney eds. Methods of Soil Analysis: Part 2. Chemical and Microbiological Properties. SSSA, Madison, WI.
  16. Pourmansour, S., and Razaghi, F., 2016. The effect of different levels of biochar and low irrigation on the efficiency of water use in beans. 2nd Iranian National Congress of Irrigation and Drainage. Isfahan, Iran. (in Persian). https://sid.ir/paper/874046/fa
  17. Park, J. H., Choppala, G. K., Bolan, N. S., Chung, J. W., and Chuasavathi, T., 2011. Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant and Soil, 348, pp. 439-451. https://doi.org/10.1007/s11104-011-0948-y
  18. Prendergast-Miller, M. T., Duvall, M., and Sohi, S. P., 2011. Localisation of nitrate in the rhizosphere of biochar-amended soils. Soil Biology and Biochemistry, 43, pp. 2243-2246. https://doi.org/10.1016/j.soilbio.2011.07.019
  19. Prendergast‐Miller, M., Duvall, M., and Sohi, S., 2014 .Biochar–root interactions are mediated by biochar nutrient content and impacts on soil nutrient availability. European Journal of Soil Science, 65, pp. 173-185. https://doi.org/10.1111/ejss.12079
  20. Price, G. 2006. Australian Soil Fertility Manual: CSIRO publishing.
  21. Reyhanitabar, A., Frahadi, E., Ramezanzadeh, H., Oustan, S., 2020. Effect of pyrolysis temperature and feedstock sources on physicochemical characteristics of biochar. Journal of Agricultural Science and Technology. 22:547–561
  22. Rhoades, J. 1996. Salinity: Electrical conductivity and total dissolved solids. Methods of soil analysis: Part 3 Chemical Methods, 5, pp. 417-435.

 https://doi.org/10.2136/sssabookser5.3.c14

  1. Shaban, M. R., and Razzaghi F., 2017. The effect of different levels of biochar, low irrigation and salinity on water use efficiency and wheat yield in greenhouse conditions. 14th National Conference on Irrigation and Evaporation Reduction, Shahid Bahonar University of Kerman. (In Persian). https://civilica.com/doc/693417
  2. Shahbazi, K., and Besharati, H., 2013. Overview of Agricultural Soil Fertility Status of Iran. Land Management Journal, 1, pp. 1-15 . (in Persian).
  3. Shu, L., Schneider, P., Jegatheesan, V., and Johnson, J., 2006. An economic evaluation of phosphorus recovery as struvite from digester supernatant. Bioresource Technology, 97, pp. 2211-2216. https://doi.org/10.1016/j.biortech.2005.11.005
  4. Siavash, B., Carapetian, Z., and Zare, S., 2005. Studying on lipid content and fatty acids in some varieties of colza (Brassica napus ). Pajouhesh-va-sazandegi, in agronomy and horticulture, 18, pp. 95-101. (In Persian). https://sid.ir/paper/19601/en
  5. Singh, B., Camps-Arbestain, M., and Lehmann, J., 2017. Biochar: a guide to analytical methods: Csiro Publishing.
  6. Singh, D. K., and Sale, P. W., 2000. Growth and potential conductivity of white clover roots in dry soil with increasing phosphorus supply and defoliation frequency. Agronomy Journal, 92, pp. 868-874. https://doi.org/10.2134/agronj2000.925868x
  7. Song, W., and Guo, M., 2012. Quality variations of poultry litter biochar generated at different pyrolysis temperatures. Journal of Analytical and Applied Pyrolysis, 94, pp. 138-145. https://doi.org/10.1016/j.jaap.2011.11.018
  8. Steiner, C., Das, K., Melear, N., and Lakly, D., 2010. Reducing nitrogen loss during poultry litter composting using biochar. Journal of Environmental Quality, 39, 1236-1242. https://doi.org/10.2134/jeq2009.0337
  9. Sun, C., Chen, X., Cao, M., Li, M., and Zhang, Y., 2017. Growth and metabolic responses of maize roots to straw biochar application at different rates. Plant and Soil, 416, pp. 487-502. https://doi.org/10.1007/s11104-017-3229-6
  10. Takaragawa, H., Yabuta, S., Watanabe, K., and Kawamitsu, Y., 2017. Effects of application of bagasse-and sunflower residue-derived biochar to soil on growth and yield of oilseed sunflower. Tropical Agriculture and Development, 61, pp. 32-39

 . https://doi.org/10.11248/jsta.61.32

  1. Tavajjoh, M., Karimian, N., Ronaghi, A., Yasrebi, J., Hamidi, R., and Olama, V., 2016. Yield, yield components and seed quality of two rapeseed cultivars as affected by different levels of phosphorus and boron under greenhouse conditions. Journal of Soil and Plant Interactions-Isfahan University of Technology, 6, pp. 99-113. (In Persian). https://doi.org/18869/acadpub.ejgcst.6.4.99
  2. Thomas, G. W. 1996. Soil pH and soil acidity. Methods of Soil Analysis: part 3 Chemical Methods, 5, pp. 475-490. https://doi.org/10.1016/S0167-8809(97)00134-5
  3. Thomsen, I. K., and Christensen, B. T., 1998. Cropping system and residue management effects on nitrate leaching and crop yields. Agriculture, Ecosystems and Environment, 68, pp. 73-84. https://doi.org/10.2136/sssabookser5.3.c16
  4. Uzoma, K., Inoue, M., Andry, H., Zahoor, A., and Nishihara, E., 2011. Influence of biochar application on sandy soil hydraulic properties and nutrient retention. Journal of Food, Agriculture and Environment. 9(3): 1137-1143.
  5. Wang, T., Camps-Arbestain, M., and Hedley, M., 2014 .The fate of phosphorus of ash-rich biochars in a soil-plant system. Plant and Soil, 375, pp. 61-74.

https://doi.org/10.1007/s11104-013-1938-z

  1. Wang, T., Camps-Arbestain, M., Hedley, M., and Bishop, P., 2012. Predicting phosphorus bioavailability from high-ash biochars. Plant and Soil, 357, pp. 173-187. https://doi.org/10.1007/s11104-012-1131-9