اثر نوع پوشش‌های گیاهی مختلف بر اجزای ماده آلی و مشخصه‌های زیستی خاک (مطالعه موردی: زیست‌بوم‌های کوهستانی نوشهر، استان مازندران)

نوع مقاله : پژوهشی

نویسندگان

1 دانشیار گروه مرتع‌داری، دانشکده منابع طبیعی، دانشگاه تربیت مدرس

2 دانشجوی مقطع دکتری، گروه جنگلداری، دانشکده منابع طبیعی، دانشگاه تربیت مدرس

3 دانش‌آموخته دکتری، گروه جنگلداری، دانشکده منابع طبیعی، دانشگاه تربیت مدرس.

چکیده

خاک به‌عنوان بستر و رویشگاه گیاهان نقش اساسی در ارائه خدمات زیست­بوم­های طبیعی ایفا می­کند و خصوصیات کیفی آن نیز به‌شدت تحت تأثیر نوع پوشش گیاهی قرار دارد. ازاین‌رو پژوهش حاضر با هدف بررسی اثر پوشش­های مختلف جنگلی، اکوتون جنگل-مرتع و مرتعی بر روی مشخصه­های مرتبط با ماده آلی و زیستی خاک در منطقه کوهستانی البرز مرکزی واقع در نوشهر، استان مازندران انجام گرفت. بدین منظور در تابستان 1402 در هر یک از رویشگاه­های مورد مطالعه سه قطعه یک هکتاری انتخاب و در هر یک از قطعات یک هکتاری، چهار نمونه خاک (به‌طور کلی 12 نمونه خاک از هر رویشگاه) در سطح 30× 30 سانتی­متر و تا عمق 10 سانتی­متری برداشت شد. نتایج تجزیه واریانس نشان داد که اغلب مشخصه‌های خاک در بین رویشگاه‌های جنگلی، اکوتون و مرتعی تفاوت معنی‌داری (p<0.05) دارند. میزان رطوبت خاک در جنگل تا 11% بیشتر و دمای آن تا 8 درجه سانتی‌گراد پایین­تر از مرتع بود. رویشگاه جنگلی همچنین کمترین چگالی ظاهری (1/16) و بیشترین میزان تخلخل (0/56)، پایداری (72/53) و میانگین وزنی قطر خاکدانه‌ها (0/39) را نشان داد. میزان فسفر، پتاسیم، کلسیم و منیزیم خاک در جنگل به‌ترتیب 168، 108/3، 91/1 و 221 درصد بالاتر از مرتع اندازه‌گیری شد. فعالیت آنزیم‌های اوره‌آز، اسید فسفاتاز، آریل سولفاتاز و اینورتاز در خاک جنگل به‌ترتیب 1/69، 2/35، 2/02 و 1/8 برابر بیشتر از مرتع بود. شاخص‌های میکروبی خاک، شامل تنفس پایه، تنفس برانگیخته و میزان کربن، نیتروژن و فسفر زیتوده در جنگل به‌ترتیب 2/84، 1/6، 1/9، 2/35 و 2/29 برابر (نسبت به مرتع) بیشتر بود. جمعیت و زی‌توده کرم‌های خاکی در جنگل به‌ترتیب 5/84 و 7/19 برابر مقدار مشاهده‌شده در مرتع با کمترین تعداد و زیتوده کرم خاکی بود. همچنین، تعداد کنه‌ها، پادمان‌ها و نماتدها در جنگل به‌ترتیب 3/46، 3/57 و 6/13 برابر بیشتر از رویشگاه مرتع اندازه­گیری شد. نتایج تحلیل مؤلفه‌های اصلی نشان داد که محورهای اول و دوم در مجموع 52/37 درصد از تغییرات داده‌ها را تبیین می‌کنند. این یافته‌ها تأیید می‌کنند که پوشش جنگلی با مقادیر بالاتر اجزای ماده آلی خاک، شاخص‌های حاصلخیزی و فعالیت‌های زیستی همبستگی بیشتری دارد. به‌طورکلی، این پژوهش نشان می‌دهد که پوشش‌های جنگلی، به دلیل ظرفیت بالای خود در حفظ حاصلخیزی و تنوع زیستی خاک، نسبت به پوشش‌های اکوتونی و مرتعی، می­توانند به‌عنوان گزینه‌ای مناسب برای احیای رویشگاه‌های تخریب‌شده در منطقه مورد مطالعه و مناطق مشابه، مورد توجه مدیران و تصمیم‌گیران قرار گیرند.

کلیدواژه‌ها


عنوان مقاله [English]

Effects of Different Types of Vegetation Cover on Soil Organic Matter Components and its Biological Characteristics (A Case Study of Mountain Ecosystems in Nowshahr, Mazandaran Province)

نویسندگان [English]

  • Yahya Kooch 1
  • Mahmood Tavakoli 2
  • Kazem Noormohammadi 3
1 Associate Prof., Department of Forestry, Faculty of Natural Resources, Tarbiat Modares University.
2 Ph.D. Student, Department of Forestry, Faculty of Natural Resources, Tarbiat Modares University.
3 Ph.D., Department of Forestry, Faculty of Natural Resources, Tarbiat Modares University.
چکیده [English]

Soil, as the bed and medium of plant growth, plays a vital role in providing services to communities that depend on natural ecosystems. Its qualitative characteristics, in turn, strongly depend on the vegetation cover in the area. The present study explores the effects of different types of vegetation cover on soil organic matter components and biological characteristics, using the mountainous region of Central Alborz in Nowshahr, Mazandaran Province, as its study site. To achieve this, forest, forest-rangeland ecotone, and rangeland habitats were identified in summer 2023 and three one-hectare plots were selected in each to collect four soil samples (to make a total of 12 soil samples per habitat) from a 30 × 30 cm surface area and a depth of 10 cm. Variance analysis revealed significant differences (p<0.05) among the soils taken from the three different habitats. Compared to rangeland soil, forest soils exhibited a higher soil moisture (by 11%) but a lower temperature (by 8°C). Moreover, samples from the forest habitat showed the lowest bulk density (1.16) but the highest porosity (0.56), stability (53.72), and mean weight diameter (0.39). Meanwhile, phosphorus, potassium, calcium, and magnesium levels in the forest soils were by 168%, 108.3%, 91.1%, and 221%, respectively, higher than those in rangeland soils. Similarly, the activities of urease, acid phosphatase, arylsulfatase, and invertase enzymes in forest soil were by 1.69, 2.35, 2.02, and 1.88 times, respectively, higher than those in rangeland soil. Moreover, forest soils were characterized by higher microbial indices, including basal respiration and stimulated respiration as well as carbon, nitrogen, and phosphorus contents, which were by 2.84, 1.6, 1.9, 2.35, and 2.29 times greater than those recorded for rangeland soil. Earthworm population and biomass in the forest soil were by 5.84 and 7.19 times greater than those observed in the rangeland one, which recorded the lowest among the three soils tested. Additionally, mites, springtails, and nematodes in the forest soil outnumbered those in rangeland soil by 3.46, 3.57, and 6.13 times, respectively. The results of principal component analysis revealed that the first and second axes together explained 52.37% of the variation. These findings confirm that forest vegetation cover establishes greater correlations with higher levels of organic matter components, fertility indices, and biological activities. Overall, it may be claimed that, due to their high capacity for maintaining soil fertility and biodiversity, forest vegetation cover can be considered a suitable option for the restoration of degraded habitats in the study region and similar areas, and that this finding should receive due consideration by managers and decision-makers.

کلیدواژه‌ها [English]

  • Ecotone
  • Forest
  • Rangeland
  • Soil fertility
  • Soil biota
  1. Adl, S. M., Acosta-Mercado, D., Anderson, T. R. and Lynn, D. H. 2006. Protozoa, supplementary material. In: Soil Sampling and Methods of Analysis (M.Carter and E.Gregorich, eds), 2nd Edition, pp.455-470. Lewis Publishers
  2. Hopkins, D.W., Alef, K. and Nannipieri, P., 1996. Methods in Applied Soil Microbiology and Biochemistry. Journal of Applied Ecology, 33(1), p.178. doi:10.2307/2405027
  3. Al-Maliki, S., Al-Taey, D.K. and Al-Mammori, H.Z., 2021. Earthworms and eco-consequences: Considerations to soil biological indicators and plant function: A review. Acta Ecologica Sinica, 41(6), pp.512-523.

https://doi.org/10.1016/j.chnaes.2021.02.003

  1. Asshoff, R., Scheu, S. and Eisenhauer, N., 2010. Different earthworm ecological groups interactively impact seedling establishment. European Journal of Soil Biology, 46(5), pp.330-334. https://doi.org/10.1016/j.ejsobi.2010.06.005
  2. Ayuke, F.O., Karanja, N.K., Muya, E.M., Musombi, B.K., Mungatu, J. and Nyamasyo, G.H.N., 2009. Macrofauna diversity and abundance across different land use systems in Embu, Kenya. Tropical and Subtropical Agroecosystems, 11(2), pp.371-384.
  3. Aziz, I., Mahmood, T., and Islam, K. R. (2014). Impact of long-term tillage and crop rotation on concentration of soil particulate organic matter-associated carbon and nitrogen. Pakistan Journal of Agricultural Sciences, 51(4), pp. 827-834.
  4. Babur, E., Dindaroğlu, T., Roy, R., Seleiman, M.F., Ozlu, E., Battaglia, M.L. and Uslu, Ö.S., 2022. Relationship between organic matter and microbial biomass in different vegetation types. In Microbial syntrophy-mediated eco-enterprising (pp. 225-245). Academic Press. https://doi.org/10.1016/B978-0-323-99900-7.00005-5
  5. Batjes, N.H., 2014. Total carbon and nitrogen in the soils of the world. European Journal of Soil Science, 65(1), pp.10-21. https://doi.org/10.1111/ejss.12114_2
  6. Bhaduri, D., Sihi, D., Bhowmik, A., Verma, B.C., Munda, S. and Dari, B., 2022. A review on effective soil health bio-indicators for ecosystem restoration and sustainability. Frontiers in Microbiology, 13, p.938481.

 https://doi.org/10.3389/fmicb.2022.938481

  1. Bimüller, C., Mueller, C.W., von Lützow, M., Kreyling, O., Kölbl, A., Haug, S., Schloter, M. and Kögel-Knabner, I., 2014. Decoupled carbon and nitrogen mineralization in soil particle size fractions of a forest topsoil. Soil Biology and Biochemistry, 78, pp.263-273. https://doi.org/10.1016/j.soilbio.2014.08.001
  2. Black, C. A., and Allison, L., 1965. Organic carbon. Methods of Soil Analysis: Part 2, pp.1367-1378.
  3. Blake, G.R. and Hartge, K.H., 1986. Particle density. Methods of soil analysis: Part 1 physical and mineralogical methods, 5, pp.377-382.

https://doi.org/10.2136/sssabookser5.1.2ed.c14

  1. Bouyoucos, G.J., 1962. Hydrometer method improved for making particle size analyses of soils 1. Agronomy journal, 54(5), pp.464-465.

https://doi.org/10.2134/agronj1962.00021962005400050028x

  1. Bower, C.A., Reitemeier, R.F. and Fireman, M., 1952. Exchangeable cation analysis of saline and alkali soils. Soil Science, 73(4), pp.251-262.
  2. Bremner, J.M. and Keeney, D.R., 1965. Steam distillation methods for determination of ammonium, nitrate and nitrite. Analytica Chimica Acta, 32, pp.485-495.
  3. Bremner, J.M. and Mulvaney, C.S., 1982. Nitrogen-Total. In: Page, A.L., Miller, R.H. and Keeney, D.R., eds. Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties. Madison, Wisconsin: American Society of Agronomy, Soil Science Society of America, pp.595-624.
  4. Brookes, P.C., Landman, A., Pruden, G. and Jenkinson, D.S., 1985. Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology and Biochemistry, 17(6), pp.837-842. https://doi.org/10.1016/0038-0717(85)90144-0
  5. Cardoso, E.J.B.N., Vasconcellos, R.L.F., Bini, D., Miyauchi, M.Y.H., Santos, C.A.D., Alves, P.R.L., and Nogueira, M.A., 2013. Soil health: looking for suitable indicators. What should be considered to assess the effects of use and management on soil health? Scientia Agricola, 70, pp.274-289.
  6. Chapman, H.D. and Pratt, P.F., 1962. Methods of analysis for soils, plants and waters. Soil Science, 93(1), p.68.
  7. Chen, K., Hu, L., Wang, C., Yang, W., Zi, H. and Manuel, L., 2021. Herbaceous plants influence bacterial communities, while shrubs influence fungal communities in subalpine coniferous forests. Forest Ecology and Management, 500, 119656.

https://doi.org/10.1016/j.foreco.2021.119656

  1. Coleman, D.C., Geisen, S. and Wall, D.H., 2024. Soil fauna: Occurrence, biodiversity, and roles in ecosystem function. In: Soil Microbiology, Ecology and Biochemistry. Elsevier, pp.131-159.
  2. Curtin, D., Qiu, W., Peterson, M.E., Beare, M.H., Anderson, C.R. and Chantigny, M.H., 2020. Exchangeable cation effects on hot water extractable carbon and nitrogen in agricultural soils. Soil Research, 58(4), pp.356-363.
  3. da Silva, D.K.A., de Oliveira Freitas, N., de Souza, R.G., da Silva, F.S.B., de Araujo, A.S.F. and Maia, L.C., 2012. Soil microbial biomass and activity under natural and regenerated forests and conventional sugarcane plantations in Brazil. Geoderma, 189, pp.257-261. https://doi.org/10.1016/j.geoderma.2012.05.020
  4. Don, A., Schumacher, J. and Freibauer, A., 2011. Impact of tropical land-use change on soil organic carbon stocks–a meta-analysis. Global Change Biology, 17(4), pp.1658-1670. https://doi.org/10.1111/j.1365-2486.2010.02336.x
  5. Elliott, E.T. and Cambardella, C.A., 1991. Physical separation of soil organic matter. Agriculture, Ecosystems & Environment, 34(1-4), pp.407-419.

 https://doi.org/10.1016/0167-8809 (91)90126-P

  1. Emmert, E.A., Geleta, S.B., Rose, C.M., Seho-Ahiable, G.E., Hawkins, A.E., Baker, K.T. and Briand, C.H., 2021. Effect of land use changes on soil microbial enzymatic activity and soil microbial community composition on Maryland's Eastern Shore. Applied Soil Ecology, 161, 103824. https://doi.org/10.1016/j.apsoil.2021.103824
  2. Esmaeilzadeh, J. and Ahangar, A.G., 2014. Influence of soil organic matter content on soil physical, chemical and biological properties. International Journal of Plant, Animal and Environmental Sciences, 4(4), pp.244-252.
  3. Esteban, G.F. and Fenchel, T.M., 2020. Ecology of protozoa. In: The Biology of Free-living Phagotrophic Protists. Springer International Publishing, Cham, Switzerland. https://doi.org/10.1007/978-3-030-28973-4
  4. Ferris, H., Cares, J.E. and Esteves, A.M., 2021. Effect of land use and seasonality on nematode faunal structure and ecosystem functions in the Caatinga dry forest. European Journal of Soil Biology, 103, 103296. https://doi.org/10.1016/j.ejsobi.2021.103296
  5. Forugi Far, H., Jafarzadeh, A.A., Torabi Golsefidi, H. and Ali Asgarzad, N., 2011. The impact of landform units on distribution and spatial variability of soil biological indices in Tabriz Plain. Journal of Water and Soil, 21(4), pp.1-18.
  6. Gmach, M.R., Cherubin, M.R., Kaiser, K. and Cerri, C.E.P., 2019. Processes that influence dissolved organic matter in the soil: a review. Scientia Agricola, 77, e20180164. https://doi.org/10.1590/1678-992x-2018-0164
  7. Hemkemeyer, M., Schwalb, S.A., Heinze, S., Joergensen, R.G. and Wichern, F., 2021. Functions of elements in soil microorganisms. Microbiological Research, 252, 126832. https://doi.org/10.1016/j.micres.2021.126832
  8. Hurisso, T.T., Norton, J.B. and Norton, U., 2014. Labile soil organic carbon and nitrogen within a gradient of dryland agricultural land-use intensity in Wyoming, USA. Geoderma, 226, pp.1-7. https://doi.org/10.1016/j.geoderma.2014.03.003
  9. Hurlbert, S.H., 1984. Pseudoreplication and the design of ecological field experiments. Ecological Monographs, 54(2), pp.187-211. https://doi.org/10.2307/1942661
  10. Jia, G., Cao, J., Wang, C., & Wang, G., 2005. Microbial biomass and nutrients in soil at the different stages of secondary forest succession in Ziwulin, northwest China. Forest Ecology and Management, 217(1), pp.117-125.

https://doi.org/10.1016/j.foreco.2005.05.055

  1. Jiang, L., Han, X., Dong, N., Wang, Y., & Kardol, P., 2011. Plant species effects on soil carbon and nitrogen dynamics in a temperate steppe of northern China. Plant and Soil, 346, pp.331-347.
  2. Joshi, R.K. & Garkoti, S.C., 2023. Influence of vegetation types on soil physical and chemical properties, microbial biomass and stoichiometry in the central Himalaya. Catena, 222, 106835. https://doi.org/10.1016/j.catena.2023.106835
  3. Karamina, H. & Fikrinda, W., 2020. Soil amendment impact to soil organic matter and physical properties on the three soil types after second corn cultivation. AIMS Agriculture and Food, 5(1), pp.150-169.
  4. Kemper, W.D. & Rosenau, R.C., 1986. Aggregate stability and size distribution. In: Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods, 5, pp.425-442.
  5. Kooch, Y. & Bayranvand, M., 2019. Labile soil organic matter changes related to forest floor quality of tree species mixtures in Oriental beech forests. Ecological Indicators, 107, 105598. https://doi.org/10.1016/j.ecolind.2019.105598
  6. Kooch, Y., Amani, M. & Abedi, M., 2022. The effect of shrublands degradation intensity on soil organic matter-associated properties in a semi-arid ecosystem. Science of the Total Environment, 853, 158664. https://doi.org/10.1016/j.scitotenv.2022.158664
  7. Kooch, Y., Ghorbanzadeh, N., Wirth, S., Novara, A. & Piri, A.S., 2021. Soil functional indicators in a mountain forest-rangeland mosaic of northern Iran. Ecological Indicators, 126, 107672. https://doi.org/10.1016/j.ecolind.2021.107672
  8. Kooch, Y., Tavakoli, M. & Akbarinia, M., 2018. Microbial/biochemical indicators showing perceptible deterioration in the topsoil due to deforestation. Ecological Indicators, 91, pp.84-91. https://doi.org/10.1016/j.ecolind.2018.03.065
  9. Korkanç, S.Y. & Dorum, G., 2019. The nutrient and carbon losses of soils from different land cover systems under simulated rainfall conditions. Catena, 172, pp.203-211.
  10. Le Bayon, R.C., Bullinger, G., Schomburg, A., Turberg, P., Brunner, P., Schlaepfer, R. & Guenat, C., 2021. Earthworms, plants, and soils. In: Hydrogeology, Chemical Weathering, and Soil Formation, pp.81-103.
  11. Lee, S.H., Kim, M.S., Kim, J.G. & Kim, S.O., 2020. Use of soil enzymes as indicators for contaminated soil monitoring and sustainable management. Sustainability, 12(19), 8209. https://doi.org/10.3390/su12198209
  12. Li, Y.Y., Dong, S.K., Wen, L., Wang, X.X. & Wu, Y., 2014. Soil carbon and nitrogen pools and their relationship to plant and soil dynamics of degraded and artificially restored grasslands of the Qinghai–Tibetan Plateau. Geoderma, 213, pp.178-184.

 https://doi.org/10.1016/j.geoderma.2013.08.024

  1. Ling, N., Sun, Y., Ma, J., Guo, J., Zhu, P., Peng, C., & Shen, Q., 2014. Response of the bacterial diversity and soil enzyme activity in particle-size fractions of Mollisol after different fertilization in a long-term experiment. Biology and Fertility of Soils, 50, pp.901-911. https://doi.org/10.1007/s00374-014-0901-6
  2. Lladó, S., López-Mondéjar, R. & Baldrian, P., 2017. Forest soil bacteria: diversity, involvement in ecosystem processes, and response to global change. Microbiology and Molecular Biology Reviews, 81(2), pp.10-1128.

 https://doi.org/10.1128/MMBR.00063-16

  1. Lu, J., Zhang, Q., Werner, A.D., Li, Y., Jiang, S. & Tan, Z., 2020. Root-induced changes of soil hydraulic properties–A review. Journal of Hydrology, 589, 125203.

 https://doi.org/10.1016/j.jhydrol.2020.125203

  1. Luo, D., Cheng, R.M., Liu, S., Shi, Z.M. & Feng, Q.H., 2020. Responses of soil microbial community composition and enzyme activities to land-use change in the Eastern Tibetan Plateau, China. Forests, 11(5), 483. https://doi.org/10.3390/f11050483
  2. Lustosa Filho, J.F., de Oliveira, H.M.R., de Souza Barros, V.M., Dos Santos, A.C. & de Oliveira, T.S., 2024. From forest to pastures and silvopastoral systems: Soil carbon and nitrogen stocks changes in northeast Amazônia. Science of the Total Environment, 908, 168251. https://doi.org/10.1016/j.scitotenv.2022.168251
  3. Ma, W., Li, G., Wu, J., Xu, G., & Wu, J., 2020. Response of soil labile organic carbon fractions and carbon-cycle enzyme activities to vegetation degradation in a wet meadow on the Qinghai–Tibet Plateau. Geoderma, 377, 114565.

 https://doi.org/10.1016/j.geoderma.2020.114565

  1. Malik, A.A., Puissant, J., Buckeridge, K.M., Goodall, T., Jehmlich, N., Chowdhury, S., & Griffiths, R.I., 2018. Land use driven change in soil pH affects microbial carbon cycling processes. Nature Communications, 9(1), 3591. https://doi.org/10.1038/s41467-018-06080-w
  2. Matus, F.J., 2021. Fine silt and clay content is the main factor defining maximal C and N accumulations in soils: a meta-analysis. Scientific Reports, 11(1), 6438.

 https://doi.org/10.1038/s41598-021-85814-8

  1. Maurya, S., Abraham, J.S., Somasundaram, S., Toteja, R., Gupta, R., & Makhija, S., 2020. Indicators for assessment of soil quality: a mini-review. Environmental Monitoring and Assessment, 192, pp.1-22. https://doi.org/10.1007/s10661-019-7970-7
  2. Mchunu, C. & Chaplot, V., 2012. Land degradation impact on soil carbon losses through water erosion and CO2 emissions. Geoderma, 177, pp.72-79.
  3. Mendes, M.S., Latawiec, A.E., Sansevero, J.B., Crouzeilles, R., Moraes, L.F., Castro, A., & Strassburg, B.B., 2019. Look down—there is a gap—the need to include soil data in Atlantic Forest restoration. Restoration Ecology, 27(2), pp.361-370.
  4. Mulvaney, R.L., 1996. Nitrogen—inorganic forms. In: Methods of Soil Analysis: Part 3 Chemical Methods, 5, pp.1123-1184.
  5. Neemisha, 2020. Role of soil organisms in maintaining soil health, ecosystem functioning, and sustaining agricultural production. Soil Health, pp.313-335.
  6. Neher, D., Wu, J., Barbercheck, M. and Anas, O., 2005. Ecosystem type affects interpretation of soil nematode community measures. Applied Soil Ecology, 30(1), pp.47-64.
  7. Okolo, C.C., Gebresamuel, G., Zenebe, A., Haile, M., & Eze, P.N., 2020. Accumulation of organic carbon in various soil aggregate sizes under different land use systems in a semi-arid environment. Agriculture, Ecosystems & Environment, 297, 106924.

 https://doi.org/10.1016/j.agee.2020.106924

  1. Pang, X., Ning, W., Qing, L., & Bao, W., 2009. The relation among soil microorganism, enzyme activity and soil nutrients under subalpine coniferous forest in Western Sichuan. Acta Ecologica Sinica, 29(5), pp.286-292.
  2. Paz‐Ferreiro, J. & Fu, S., 2016. Biological indices for soil quality evaluation: perspectives and limitations. Land Degradation & Development, 27(1), pp.14-25.
  3. Peng, Y., Holmstrup, M., Schmidt, I.K., De Schrijver, A., Schelfhout, S., Heděnec, P., & Vesterdal, L., 2022. Litter quality, mycorrhizal association, and soil properties regulate effects of tree species on the soil fauna community. Geoderma, 407, 115570. https://doi.org/10.1016/j.geoderma.2021.115570
  4. Phillips, H.R., Guerra, C.A., Bartz, M.L., Briones, M.J., Brown, G., Crowther, T.W., & Eisenhauer, N., 2019. Global distribution of earthworm diversity. Science, 366(6464), pp.480-485.
  5. Pires, L.F., Brinatti, A.M., Saab, S.C., & Cássaro, F.A., 2014. Porosity distribution by computed tomography and its importance to characterize soil clod samples. Applied Radiation and Isotopes, 92, pp.37-45.
  6. Plaster, E.J., 1985. Soil Science and Management. Delmar Publishers Inc.
  7. Rieke, E.L., Bagnall, D.K., Morgan, C.L., Flynn, K.D., Howe, J.A., Greub, K.L., & Honeycutt, C.W., 2022. Evaluation of aggregate stability methods for soil health. Geoderma, 428, 116156. https://doi.org/10.1016/j.geoderma.2022.116156
  8. Rocci, K.S., Lavallee, J.M., Stewart, C.E., & Cotrufo, M.F., 2021. Soil organic carbon response to global environmental change depends on its distribution between mineral-associated and particulate organic matter: A meta-analysis. Science of the Total Environment, 793, 148569. https://doi.org/10.1016/j.scitotenv.2021.148569
  9. Sankaran, M. & Augustine, D.J., 2004. Large herbivores suppress decomposer abundance in a semiarid grazing ecosystem. Ecology, 85(4), pp.1052-1061.
  10. Sarker, T.C., Zotti, M., Fang, Y., Giannino, F., Mazzoleni, S., Bonanomi, G., & Chang, S.X., 2022. Soil aggregation in relation to organic amendment: a synthesis. Journal of Soil Science and Plant Nutrition, 22(2), 2481-2502. https://doi.org/10.1007/s42729-022-00586-2
  11. Sepahvand, H., Feizian, M., Mirzaeitalarposhti, R., & Müller, T., 2019. Density separation of soil organic matter across three land uses in calcareous soils of Iran. Archives of Agronomy and Soil Science, 65(13), 1820-1830.

 https://doi.org/10.1080/03650340.2019.1617410

  1. Singh, A.K., Jiang, X.J., Yang, B., Wu, J., Rai, A., Chen, C., & Singh, N., 2020. Biological indicators affected by land use change, soil resource availability and seasonality in dry tropics. Ecological Indicators, 115, 106369.

 https://doi.org/10.1016/j.ecolind.2020.106369

  1. Singh, A.K., Rai, A., Banyal, R., Chauhan, P.S., & Singh, N., 2018. Plant community regulates soil multifunctionality in a tropical dry forest. Ecological Indicators, 95, 953-963. https://doi.org/10.1016/j.ecolind.2018.08.013
  2. Singh, S., Singh, J., & Vig, A.P., 2016. Effect of abiotic factors on the distribution of earthworms in different land use patterns. The Journal of Basic & Applied Zoology, 74, 41-50.
  3. Smith, P., Keesstra, S.D., Silver, W.L., & Adhya, T.K., 2021. The role of soils in delivering Nature's Contributions to People. Philosophical Transactions of the Royal Society B, 376(1834), 20200169. https://doi.org/10.1098/rstb.2020.0169
  4. Tardy, V., Mathieu, O., Lévêque, J., Terrat, S., Chabbi, A., Lemanceau, P., & Maron, P.A., 2014. Stability of soil microbial structure and activity depends on microbial diversity. Environmental Microbiology Reports, 6(2), 173-183.

https://doi.org/10.1111/1758-2229.12124.

  1. Tavakoli, M., Kooch, Y., & Akbarinia, M., 2018. Frequency and diversity of worms in topsoil of degraded and reclaimed forest habitats of the Caspian region. Iranian Journal of Forest, 10(3), 293-306. (in Persian)
  2. Teixeira, H.M., Cardoso, I.M., Bianchi, F.J., da Cruz Silva, A., Jamme, D., & Peña-Claros, M., 2020. Linking vegetation and soil functions during secondary forest succession in the Atlantic forest. Forest Ecology and Management, 457, 117696.

https://doi.org/10.1016/j.foreco.2019.117696

  1. Tiwari, N., Lone, A.R., Thakur, S.S., Sokefun, O.B., & Yadav, S., 2022. Earthworms: A Contrivance to Ameliorate Water Infiltration Rates and Water Holding Capacity in Agroecosystem.
  2. Topa, D., Cara, I.G., & Jităreanu, G., 2021. Long term impact of different tillage systems on carbon pools and stocks, soil bulk density, aggregation and nutrients: A field meta-analysis. Catena, 199, 105102. https://doi.org/10.1016/j.catena.2021.105102
  3. Van der Putten, W.H., Bardgett, R.D., Bever, J.D., Bezemer, T.M., Casper, B.B., Fukami, T., & Wardle, D.A., 2013. Plant–soil feedbacks: the past, the present and future challenges. Journal of Ecology, 101(2), 265-276. https://doi.org/10.1111/1365-2745.12054
  4. Van Miegroet, H., Boettinger, J.L., Baker, M.A., Nielsen, J., Evans, D., & Stum, A., 2005. Soil carbon distribution and quality in a montane rangeland-forest mosaic in northern Utah. Forest Ecology and Management, 220(1-3), 284-299.

 https://doi.org/10.1016/j.foreco.2005.08.030

  1. Wang, W.J., & Dalal, R.C., 2006. Carbon inventory for a cereal cropping system under contrasting tillage, nitrogen fertilisation and stubble management practices. Soil and Tillage Research, 91(1–2), 68–74. https://doi.org/10.1016/j.still.2005.11.005
  2. Wenxiang, H., Xin, J., & Yongrong, B., 2002. Study on soil enzyme activity effected by dimehypo. Xibei Nonglin Keji Daxue Xuebao (China).
  3. Wollum, A.G., 1982. Cultural methods for soil microorganisms. In: Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties, 9, pp.781-802.
  4. Wu, J., Wang, H., Li, G., Ma, W., Wu, J., Gong, Y., & Xu, G., 2020. Vegetation degradation impacts soil nutrients and enzyme activities in wet meadow on the Qinghai-Tibet Plateau. Scientific Reports, 10: 21271.

https://doi.org/10.1038/s41598-020-78216-5

  1. Xue, B., Huang, L., Huang, Y., Yin, Z., Li, X., & Lu, J., 2019. Effects of organic carbon and iron oxides on soil aggregate stability under different tillage systems in a rice–rape cropping system. Catena, 177, 1-12. https://doi.org/10.1016/j.catena.2019.02.007
  2. Yao, Y., Shao, M., Fu, X., Wang, X., & Wei, X., 2019. Effects of shrubs on soil nutrients and enzymatic activities over a 0–100 cm soil profile in the desert-loess transition zone. Catena, 174, 362-370. https://doi.org/10.1016/j.catena.2018.11.007
  3. Yeates, G.W., Ferris, H., Moens, T., & Putten, W.V.D., 2009. The role of nematodes in ecosystems.
  4. Zancan, S., Trevisan, R., & Paoletti, M.G., 2006. Soil algae composition under different agro-ecosystems in North-Eastern Italy. Agriculture, Ecosystems & Environment, 112(1), 1-12. https://doi.org/10.1016/j.agee.2005.07.004
  5. Zeng, D.H., Hu, Y.L., Chang, S.X., & Fan, Z.P., 2009. Land cover change effects on soil chemical and biological properties after planting Mongolian pine (Pinus sylvestris var. mongolica) in sandy lands in Keerqin, northeastern China. Plant and Soil, 317, 121-133. https://doi.org/10.1007/s11104-008-9790-1
  6. Zhang, L., Jing, Y., Chen, C., Xiang, Y., Rezaei Rashti, M., Li, Y., Deng, Q., & Zhang, R., 2021. Effects of biochar application on soil nitrogen transformation, microbial functional genes, enzyme activity, and plant nitrogen uptake: A meta‐analysis of field studies. GCB Bioenergy, 13(12), 1859–1873. https://doi.org/10.1111/gcbb.12836
  7. Zhao, J., Wang, X., Shao, Y., Xu, G., & Fu, S., 2011. Effects of vegetation removal on soil properties and decomposer organisms. Soil Biology and Biochemistry, 43(5), 954-960.

 https://doi.org/10.1016/j.soilbio.2011.01.018