نوع مقاله : فنی ترویجی

نویسندگان

1 استادیار گروه محیط زیست دانشکده منابع طبیعی، دانشگاه تهران

2 عضو هیات علمی مرکز تحقیقات کشاورزی و منابع طبیعی اصفهان

چکیده

 

بسیاری از دانشمندان، مدیران، و مردم، همواره علاقه‌مند به پایش سلامت جمعیت‌ها و اکوسیستم‌ها هستند. این رویکرد منجر به افزایش تحقیقات مربوط به کارایی انواع نشانگرها به منظور سنجش عوامل تنش‌زای ناشی از آلاینده‌ها شده است. پایش سلامتی اکوسیستم نیازمند استفاده از مجموعه‌ای از نشانگرها می‌باشد که علاوه بر زیست شناختی بودن، باید روش مشخص داشته، جامع نگر بوده و بتواند به طور موثر در طول زمان برای ارزیابی روند و دادن هشدارهای زود هنگام، مورد استفاده قرار گیرد. در یک مدیریت موفق و مستمر اراضی، نشانه‌های زیستی، عناصر سازنده در ارزیابی کیفیت خاک محسوب می‌شوند. کرم‌های خاکی اغلب به عنوان نشانگرهای زیستی کیفیت خاک پیشنهاد می‌شوند زیرا آنها بخش مهمی از اکوسیستم خاک بوده و حضور همیشگی در خاک دارند. کرم‌های خاکی به دلیل نقش فوق‌العاده‌ای که در فرآیندهای زیستی، شیمیایی و فیزیکی خاک ایفا می‌کنند و همچنین به خاطر توزیع گسترده‌ در انواع خاک‌ها، برای بسیاری از آزمون‌های سمیت و ارزیابی‌های محیطی مورد استفاده قرار گرفته‌اند. تجمع زیستی فلزات توسط کرم های خاکی می‌تواند به عنوان یک شاخص محیط زیستی برای فراهمی فلزات باشد. در این مقاله، مباحث فوق و از جمله انواع نشانگرها و کاربرد آنها در مدیریت اراضی و ارزیابی‌های محیط زیستی و به ویژه استفاده از کرم‌های خاکی به عنوان یک نشانگر زیستی کارآمد در پایش کیفیت خاک، به تفصیل مورد بررسی قرار خواهد گرفت

کلیدواژه‌ها

عنوان مقاله [English]

Application of bioindicators in soil ecosystem health monitoring (with emphasis on earthworms)

نویسندگان [English]

  • a h 1
  • m y 2

چکیده [English]

Many of scientists, managers, and the public are interested in assessing the health of communities and ecosystems. This has resulted in increased studies of the usefulness of different indicators as a measure of stressors and contaminants. Monitoring ecosystem health requires the use of a suite of bioindicators that are biologically, methodologically, and societal, and can be used effectively over time to assess trends and provide early warning. In a successful and continuous management of lands, Bioindicators can be considered as constructive elements in assessment of soil quality. Earthworms are often referred to as bioindicators of soil quality, because they are an important part of soil ecosystem and are always present in the soils. Because of extraordinary role that earthworms have in physical, chemical and biological process in soils, and also because of the wide distribution of earthworms in soils, these creatures have been used for a lot of toxicity tests and environmental evaluations. Bioaccumulation of metals by earthworms can be used as an environmental indicator for availability of metals. In this article, the above topics including a variety of indicators and their application in land management and environmental assessments, and especially the use of earthworms as a bioindicator of soil quality in efficient monitoring will be discussed in details. 

 

کلیدواژه‌ها [English]

  • Land assessment
  • Biomonitoring
  • Earthworms
  • indicator
  • Heavy metals
  1. جنابی حق پرست، ر.، گلچین، ا. و کهنه، ا. 1392. مطالعه اثر غلظت‌های مختلف کادمیوم بر رشد کرم خاکی گونه آیزنیا فتیدا در یک خاک آهکی . نشریه آب و خاک (علوم و صنایع کشاورزی)، جلد 27 شماره 1، 35-24.
  2. لکزیان، ا.، نصیری محلاتی، م. و حافظ دربانی، م. 1382. انباشتگی فلزات سنگین در کرم خاکی آیزنیا فتیدا. مجله علوم و صنایع کشاورزی. دوره 17 شماره2.
  3. یحیی‌آبادی، م. 1391. کرم‌ها زباله‌هایم را می‌خورند. (ترجمه). نشر نصوح، 175 صفحه.
  4. یحیی‌آبادی، م. 1393. ارزیابی تنوع زیستی کرم‌های خاکی در خاکهای آلوده به برخی سموم شیمیایی. کنگره ملی خاک و محیط زیست، دانشگاه ارومیه.
  5. Amaral, F.S.,and A.S. Rodrigues. 2005. Metal accumulation and apoptosis in the alimentary canal of Lumbricus terrestris as a metal biomarker. Biometals. 18 (3):199-206.
  6. Alberti G, Hauk B, Kohler HR, and V. Storch. 1996. Dekomposition. Ecomedverlag, Landsberg, 490 pp.
  7. Aspinall, R., and D.Pearson.2000. Integrated geographical assessment of environmental contamination in water catchments: Linking landscape ecology, environmental modeling and GIS. Journal of Environmental Management. 59: 299-319.
  8. Bengtsson, G.,and S.Rundgren. 1984. Ground-living invertebrates in metal-polluted forest soils. Ambio. 3: 29-33. 
  9. Beratan, K. et al, 2004. Sustainability indicators as a communicative tool: Building bridges in Pennsylvania. Environmental Monitoring and Assessment. 94: 179-191.
  10. Beyer W.N., and C. Stafford. 1993. Survey and evaluation of contaminants in earthworms and in soilsderived from dredged material at confined disposal facilities in the Great Lakes Region.Environmental Monitoring and Assessment. 24:151–165.
  11. Bispo A, D.,Cluzeau, R., M. Creamer Dombos, Graefe U, Krogh PH, Sousa LP, Peres G, Rutgers M, Winding A, Rombke J. 2009. Indicators for monitoring soil biodiversity. Integrated Environmental Assessment and  Management. 5:717–719.
  12. Burger, J., and M.Gochfeld. 2004. Bioindicators for assessing human and ecological health. Environmental Monitoring. CRC Press. P 541-566.
  13. Carignan, V., and M.A.Villard. 2002. Selecting indicator species to monitor ecological integrity: A review. Environmental Monitoring and Assessment. 78 (1): 45-61.
  14. Edwards, C.A. 2004. The Importance of Earthworms as Key Representatives of the Soil Fauna. InEarthworm Ecology; Edwards, C.A., Ed.; CRC Press LLC: Boca Raton, FL, USA, pp. 3-11.
  15. Edwards, C.A., and P.J.Bohlen. 1996. Biology and Ecology of Earthworms. Chapman & Hall, London, 426 pp.
  16. Environmental Protection Agency (EPA). 1997. Ecological Indicators: Evaluation criteria. Washington, DC: Environmental Protection Agency.
  17. Fore, LS. etal. 1996. Assessing invertebrate responses to human activities: Evaluating alternative approaches. Journal of North American Benthol Society. 15: 212-231.
  18. Fox, G. 1994.Bioindicators as a measure of success for virtual elimination of persistence toxic substances.: International Joint Commision. Hull, Quebec, Canada.
  19. Giovanetti, A., S.Fesenko., M.L. Cozzella., L.D. Asencio.,and U.Sansone.2010. Accumulation andbiological effects in the earthworm Eisenia fetida exposed to natural and depleted uranium. Journal of Environmental Radioactivity. 101, 509-516.
  20. Hirano, T., and T. Kazuyoshi. 2011. Earthworms and Soil Pollutants. Sensors. 11, 11157-11167.
  21. Hauser S., D. Asawalam, and B.Vanlauwe. 1998. Spatial and temporal gradients of earthworm casting activity in alley cropping systems. Agroforestry Systems. 41:127–137.
  22. Kale, R.D. 1998. Annelids, in: Applied Soil Biology and Ecology. Veeresh, G.K. & Rajagopal,D. pp.(90-109), Oxfordand IBH Publishing Co. Pvt. Ltd., New Dehli.
  23. Lanno R., J. Wells, J. Conder, and N. Basta. 2004. The bioavailability of chemicals in soil for earthworms. Ecotoxicol Environmental Safety. 57:39–47.
  24. Latif, R., S.Ezzatpanah., M.Malek, and H.Parsa. 2009. Earthworms of central Alborz Mountain, Iran. Iranian Journal of Animal Biosystematics(IJAB). 5 (2): 1-15.
  25. Lee, S.H.; E.Y.;Kim, S.Hyun, and J.G.Kim.2009. Metal availability in heavy metal-contaminated openburning and open detonation soil: Assessment using soil enzymes, earthworms, and chemicalextractions. Journal of Hazardous Materials. 170(1): 382-388.
  26. Lister, L.J., C.Svendsen, J.Wright, H.L.Hooper, and D.J.Spurgeon.2011. Modelling the joint effects of a metal and a pesticide on reproduction and toxicokinetics in Lumbricid earthworms. Environment. International. 37, 663-670.
  27. Lucia, s. a., A.M. Cornelis, b. Van Gestel, a. Annamaria Rocco and Giulia Maisto. 2012. Soil invertebrates as bioindicators of urban soil quality. Environmental Pollution. 161, 57-63.
  28. Lukkari T., and J. Haimi. 2005. Avoidance of Cu- and Zn-contaminated soil by three ecologicallydifferent earthworm species. Ecotoxicol Environmental Safety. 62:35–41.
  29. Mirmonsef. H., M.Malek. and R.Latif.2011. The Earthworm fauna of Tehran Province, Iran: an Ecological Characterization. Iranian Journal of Animal Biosystematics (IJAB). 7 (2): 89-97.
  30. Morgan JE, and AJ. Morgan. 1999. The accumulation of metals (Cd, Cu, Pb, Zn and Ca) by two ecologically contrasting earthworm species (Lumbricus rubellus and Aporrectodea caliginosa): implications for ecotoxicological testing. Applied Soil Ecology. 13:9–20.
  31. Nahmani, J., M.E. Hodson, and S. 2007. Black, Effects of metals on life cycle parameters of the earthworm Eisenia fetida exposed to field-contaminated, metal-polluted soils. Environmental Pollution. 49, 44-58.
  32. Natal, T. G.Ojeda, J.Pratas, C.A.Van Gestel, and J.P. Sousa. 2011. Toxicity to Eisenia andreiand Folsomia candida of a metal mixture applied to soil directly or via an Organic matrix. Ecotoxicol Environmental Safety. 74: 1715-1720.
  33. Neuhauser EF, Z.V. Cukic, M.R. Malecki, R.C. Loehr, and P.R. Durkin. 1995 Bioconcentration andbiokinetics of heavy metals in the earthworm. Environmental Pollution. 89:293–301.
  34. Novais, S.C. S.I. Gomes, and C. Gravato. 2011. Reproduction and biochemical responses in Enchytraeus albidus (Oligochaeta) to zinc or cadmium exposures. Environmental Pollution. 159: 1836-1843.
  35. Omrani, G.A., M.Zamanzadeh, A.Maleki, and Y.Ashori. 2005. Earthworm ecology in northern part of Iran: with an emphasis on compost worm Eisenia fetida. Journal of applied sciences. 5 (8): 1434-1437.
  36. Qiu, H., M.G.Vijver, and W.J. Peijnenburg. 2011. Interactions of cadmium and zinc impact their toxicity to the earthworm Aporrectodea caliginosa. Environment, Toxicology and Chemistry. 30: 2084-2093.
  37. Song, Y. Q.Zhou, H.Xu., L.Ren, T.Sun, and P.Gong. 2002. Acute toxicological effects of heavy metal pollution in soils on earthworms.  Available at http:// ncbi.nlm.nih.gov/pubmed/11993124.
  38. Stahl, R.G. 2000. Ecological indicators in risk assessment: Workshop summary. Human and Ecological Risk Assessment. 6: 671-677.
  39. Tischer S. 2008. Lumbricidae communities in soil monitoring sites differently managed andpolluted with heavy metals. Polish Journal of Ecology. 56:635–646.
  40. USDA. Available at http://www.nrcs.usda.gov/wps/portal/nrcs/detailfull/soils/health/assessment.
  41. Veltman, K., M.A.J.Huijbregts, M.G.Vijver, and W.J.G.M.Peijnburg. 2007. Metal accumulation in the earthworm Lumbricus rubellus. Model predictions compared to field data. Environmental Pollution. 146: 428-436.
  42. Yahyaabadi, M. and A.Asadi. 2010. Earthworm population response to tillage and residue management in central Iran. 19th World Congress of Soil Science, Brisbane, Australia.
  43. Yeardley RB, JM. Lazorchak, and LC. Gast. 1996. The potential of an earthworm avoidance test for evaluation of hazardous waste sites. Environment, Toxicology and Chemistry. 15:1532–1537.
  44. Zhang, Z.S. and D.M.Zheng. 2009. Bioaccumulation of total and methyl mercury in three earthwormspecies (Drawida sp., Allolobophora sp., and Limnodrilus sp.). Bulletin of Environmental Contamination and Toxicology.  83: 937-942.
  45. Zwieten Van. L., J. Rust, T. Kingston, G. Merrington and S. Morris. 2004. Influence of copper fungicide residues on occurrence of earthworms in avocado orchard soils. Science of the Total Environment. 329:29–41.