معرفی نقشه‌برداری رقومی خاک

نوع مقاله : فنی ترویجی

نویسندگان

1 مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی سیستان

2 بخش تحقیقات خاک و آب، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی اصفهان، سازمان تحقیقات، آموزش و ترویج کشاورزی، اصفهان، ایران

3 گروه علوم خاک، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

چکیده

نقشه­ برداری رقومی خاک[1]یکی از زیرشاخه­ های علم خاکشناسی است که در سال 2003 توسط مک ­براتنی و همکاران او معرفی شد و از آن زمان تاکنون پیشرفت­ها و خروجی­ های تحقیقاتی زیادی در سطح جهانی داشته است. نقشه­ برداری رقومی خاک عبارت از ایجاد و جمع­ آوری سیستم­های اطلاعات مکانی خاک با استفاده از روش­های مشاهدات میدانی و آزمایشگاهی که با داده­ های محیطی از طریق ارتباطات کمی همراه شده­اند.نقشه­ برداری رقومی خاک منجر به ایجاد خروجی به صورت نقشه رستری تخمین، همراه با عدم قطعیت پیش­ بینی می­شود. افزایش دسترسی به داده­ های مکانی مانند مدل رقومی ارتفاع و تصاویر ماهواره ­ای، افزیش نیروی محاسباتی برای پردازش داده­ ها، توسعه ابزارهای داده­ کاوی و سامانه اطلاعات جغرافیایی و افزایش تقاضای جهانی به داده­ های مکانی دارای ارزیابی عدم قطعیت از عوامل تاثیرگذار در موفقیت نقشه­ برداری رقومی خاک بوده ­اند. در این مقاله به وضعیت تکاملی نقشه­ برداری رقومی خاک، متغیرهای کمکی، مثال­ هایی از مدل­سازی و مطالعات انجام شده در ایران پرداخته شده است.



[1]Digital soil mapping

کلیدواژه‌ها


عنوان مقاله [English]

Digital soil mapping

نویسندگان [English]

  • Mohammadreza pahlavanrad 1
  • Norair Toomanian 2
  • Farhad Khormali 3
1 Soil and WaterResearch Department,Sistan Agricultural and Natural Resources Research and Education Center, AREEO,Zabol, Iran.
2 Soil and WaterResearch Department,Isfahan Agricultural and Natural Resources Research and Education Center, AREEO,Isfahan, Iran
3 Department of Soil Science, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
چکیده [English]

Digital soil mapping (DSM),as one of the sub-disciplines of soil science, was first introduced in McBratny et al. in 2003. It has since then witnessed many developments and has had a lot of scientific contributions at the global level. DSM aims to create and populate spatial soil information collected through field and laboratory observations that are coupled through quantitative relationships with environmental data. The output involves raster maps of predictions and uncertainties. The enhanced availability of spatial data, such as digital elevation models and satellite images; the increasing computation power to process data; the development of data-mining tools and GIS; and increasing global demand for spatial data including uncertainty assessments are some of the factors that have led to the success of field.This paper reviews the development of digital soil mapping through time, the covariates, some modeling examples,and the DSM studies so far carried out in Iran.

کلیدواژه‌ها [English]

  • Soil map
  • modeling
  • Uncertainty
  1. پهلوان راد، م.، خرمالی، ف.، تومانیان، ن.، کیانی، ف و کمکی، چ.ق.، 1393 .پهنه بندی رقومی واحدهای خاک با استفاده از مدل درختان تصمیم گیری تصادفی در استان گلستان. پژوهشهای حفاظت آب و خاک. جلد 21 . شماره 6: 73-93
  2. تقی­زاده مهرجردی، ر.، سرمدیان، ف.، امید، م.، تومانیان، َن.، روستا، م.، رحیمیان، م.ح. 1392. ترکیب فاصله تاکسونومیکی خاکها و درخت تصمیم برای پیش بینی مکانی کلاسهای خاک در اردکان. دو فصلنامه علمی پژوهشی خشک بوم، جلد 3 شماره 2 : 39-26.
  3. حمزه­پور، ن.، کریمیان اقبال، م.، تومانیان، ن.، سکوتی اسکویی، ر.، بوگارت، پاتریک. 1394. ارزیابی عدم قطعیت مربوط به تخمین مرز تغییرات شوری خاک در دشت ارومیه با روش انتروپی حداکثر اریب. نشریه مدیریت خاک و تولید پایدار. جلد پنجم، شماره دوم، 131-147.
  4. فاتحی، ش.، محمدی، ج.، صالحی، م. ح.، مومنی، ع.، تومانیان، ن.، جعفری، ا. 1395. ریزمقیاس­سازی نقشه رقومی کربن آلی خاک. نشریه آب و خاک، جلد 30، شماره مهر و آبان، 1157-1142.
  5. مروج، ک. 1390. تهیه نقشه رقومی خاک با استفاده از تجزیه و تحلیل­های ژئومرفومتری در بخشی از حوضه آبخیز رودخانه جاجرود. رساله دکتری. دانشگاه تربیت مدرس. 127 صفحه.

 

  1. Abdel-Kader, F. H., 2011. Digital soil mapping at pilot sites in the northwest coast of Egypt: A multinomial logistic regression approach. The Egyptian Journal of Remote Sensing and Space Sciences. 14: 29-41.
  2. Adhikari, K., Hartemink, A.E., Minasny, B., Bou Kheir, R, Greve, M.B., Greve, M.H. 2014. Digital Mapping of Soil Organic Carbon Contents and Stocks in Denmark. PLoSONE 9(8): e105519. doi:10.1371/journal.pone.0105519.
  3. Adhikari, K., Minasny, B., Greve, B.G., and Greve, M.H. 2013. Constructing a soil class map of Denmark based on the FAO legend using digital techniques. Geoderma.214-215:101-113.
  4. Akaike, H., 1974. A new look at the statistical model identification. IEEE Transactions onAutomatic Control.19 (6): 716–723.
  5. Akramkhanov, A., Martius, C., Park, S.J., and Hendrickx, J.M. 2011. Environmental factors of spatial distribution of soil salinity on flat irrigated terrain. Geoderma. 163: 55-62.
  6. Aksoy, E., Yigini, Y., Montanarella, L .2016. Combining Soil Databases for Topsoil Organic Carbon Mapping in Europe. PLoS ONE. 11(3):e0152098. doi:10.1371/journal.pone.0152098
  7. Anderson, K., and Croft, H. 2009. Remote sensing of soil surface properties. Prog. In Phys. Geogr. 33, 457-473. Applications of Optical Remote Sensing, Wiley, New York, pp. 491-526.
  8. Bagheri Bodaghabadi, M., Salehi, M.H., Martínez-Casasnovas, J. A.  Mohammadi, J., Toomanian, N. Esfandiarpoor Borujeni, I., 2011. Using Canonical Correspondence Analysis (CCA) to identify the most important DEM attributes for digital soil mapping applications. Catena, 86: 66-74.
  9. Behrens, T., Förster, H., Scholten, H.T., Steinrücken, U., Spies E., and Goldschmitt, M. 2005. Digital Soil Mapping using Artificial Neural Networks. Journal of Plant Nutrition and Soil Science. 168:21-33.
  10. Brungard, C, W. 2009. Alternative Sampling and Analysis Methods for Digital Soil Mapping in Southwestern Utah. Thesis for Master of Science. Utah State University. USA.
  11. Buol, S.W., Southard, R.J., Graham, R.C., and McDaniel, P.A. 2003. SoilGenesis and Classification – 5th edition. Iowa State Press, Ames Iowa.
  12. Burrough, P.A., MacMillian, R.A., van Deusen, W., 1992. Fuzzy classification methods for determining land suitability from soil profile observations and topography. European Journal of Soil Science. 43:193–210.
  13. Butler, B.E., 1964. Can pedology be rationalized? Australian Society of Soil Science. Publication No. 3. Canberra.
  14. Dahlgren, R.A., Boettinger, J.L., Huntington, G.L., and Amundson, R.G. 1997. Soil development along an elevational transect in the western Sierra Nevada, California. Geoderma. 78(3-4): 207-236.
  15. Debella-Gilo, M., and Etzelmüller, B. 2008. Spatial prediction of soil classes using digital terrain analysis and multinomial logistic regression modeling integrated in GIS: Examples from Vestfold County, Norway. Catena. 77: 8-18.
  16. Goovaerts, P., 2000. Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. Journal of Hydrology. 226: 113-129.
  17. Grimm, R., Behrens, T., Marker, M., and Elsenbeer, H. 2008. Soil organic carbon concentrations and stocks on Barro Colorado Island - Digital soil mapping using random forests analysis. Geoderma. 146(1-2): 102-113.
  18. Hengl, T., Heuvelink, G.B.M., Kempen. B.,Leenaars, J.G.B., Walsh, M.G., Shepherd K.D.,Sila, A., MacMillan, R.A.,  Jesus, J.M.D., Tamene, L.,  Tondoh, J.E. 2015 Mapping Soil Properties of Africa at 250 m Resolution: Random Forests Significantly Improve Current Predictions. PLoS ONE 10(6): e0125814. doi:10.1371/journal.pone.0125814.
  19. Hengl, T., Rossiter, D.G., and Husnjak, S., 2002. Mapping soil properties from an existing national soil data set using freely available ancillary data. 17th World Congress of Soil Science, Bangkok, Thailand, August 14-21. Paper no. 1140.
  20. Hengl, T., Heuvelink, G.B.M., Stein, A., 2004. A generic frameworkfor spatial prediction of soil variables based on regressionkriging.Geoderma. 120: (1–2), 75–93.
  21. Hengl, T., Toomanian, N., Reuter, H. I., and Malakouti, M. J. 2007. Methods to interpolate soil categorical variablesfrom profile observations: Lessons from Iran. Geoderma. 140(4):417–427.
  22. Hueng, R., Bulmer, C.B., Schmidt., M.G. 2014. Predictive soil parent material mapping at a regional-scale: A Random Forest approach. Geoderma. 214-215: 141-154.
  23. Jafari,  A., Ayoubi, S., Khademi, H., A., Finke, P.A., and Toomanian, N. 2013. Selection of a taxonomic level for soil mapping using diversity and map purity indices: A case study from an Iranian arid region. Geomorphology. 201: 86-97.
  24. Jafari, A., Finke, P.A., Van de Wauw, J., Ayoubi, S., Khademi, H., 2012. Spatial prediction of USDA- great soil groups in the arid Zarand region, Iran: comparing logistic regression approaches to predict diagnostic horizons and soil types. European Journal of Soil Science. 63: 284-309.
  25. Jafari, A., Khademi, H., Finke, P.A., Van de Wauw, J., Ayoubi, S., 2014. Spatial prediction of soil great groups by boosted regression trees using a limited point dataset in an arid region, southeastern Iran. Geiderma. 232-234,148-163.
  26. Jenny, H. 1941. Factors of Soil Formation: A System of Quantitative Pedology. McGraw-Hill, New York.
  27. Jensen, J.R. 2005. Introductory Digital Image Processing: A Remote Sensing Perspective, 3rd ed. Pearson Prentice Hall, Upper Saddle River, NJ.
  28. Kempen, B. 2011. Digital Soil Mapping in Man-dominated landscapes. PhD thesis. Wageningen University. Wageningen. Netherland.
  29. Kempen, B., Brus, D.J., Heuvelink, G.B.M., and Stoorvogel. J.J.  2009. Updating the 1:50,000 Dutch soil map using legacy soil data: A multinomial logistic regression approach. Geoderma. 151:311–326.
  30. Kempen, B., Brus, D.J., Stoorvogel, J.J., Heuvelink, G.B.M., and de Vries, F. 2012. Efficiency Comparison of Conventional and Digital Soil Mapping for Updating Soil Maps. Soil Science  Society of American Journal.76:2097-2115.
  31. Lagacherie, P., McBratney, A.B., 2006. Chapter 1 spatial soil information systems and spatial soil inference systems: perspectives for digital soil mapping. Developments in Soil Science. 3 –22.
  32. Ließ, M., Glaser. B., and Huwe, B., 2012. Uncertainty in the spatial prediction of soil texture comparison of regression tree and random forest models.  Groderma. 170: 70-79.
  33. Mallavan B.P., Minasny B., McBratney A.B., 2010. Homosoil, a Methodology for Quantitative Extrapolation of Soil Information across the Globe. IN: J.L. Boettinger et al. (eds.), Digital Soil Mapping, Progress in Soil Science 2, DOI 10.1007/978-90-481-8863-5_12, Springer Science+Business Media B.V. 2010.
  34. Malone, B. P., Styc Q., Minasny, B., McBratney, A.B., 2017.  Digital soil mapping of soil carbon at the farm scale: A spatial downscaling approach in consideration of measured and uncertain data. Geoderma. 290:91-99.
  35. Marchetti, A., Piccini, C., Santucci, S., Chiuchiarelli, I., and Francaviglia, R., 2011. Simulation of soil types in Teramo province (Central Italy) with terrain parameters and remote sensing data. Catena. 85: 267-273.
  36. McBratney, A.B., de Gruijter, J.J., Brus, D.J., 1992. Spacial prediction and mapping of continuoussoil classes. Geoderma 54:39–64.
  37. McBratney, A.B., Mendonça Santos, and M.L., Minasny, B. 2003. On digital soil mapping. Geoderma. 117: 3-52.
  38. Minasny, B., and McBratney, A.B. 2006. A conditioned Latin hypercube method for sampling in the presence of ancillary information. Computers & Geosciences. 32(9):1378-1388.
  39. Minasny, B., and McBratney, A.B., 2007. Latin hypercube sampling as a tool for digital soil mapping. P153-165. In: Lagacherie, P., McBratney, A.B., Voltz, M. (Eds.), Digital Soil Mapping: An introductory perspective. Elsevier, Amsterdam.
  40. Minasny, B.,McBratney, A.B., 2016. Digital soil mapping: A brief history and some lessons, Geoderma. 264:301-311.
  41. Moore, I.D., Ladson, A.R., and Grayson, R. 1993. Digital Terrain Modelling: A review of hydrological, geomorphological and biological applications. Hydrogical Processes. 5:3-30.
  42. Moran, C.J., and Bui, E.N. 2002. Spatial data mining for enhancing soil map modeling. International Journal of Geographical Information Science. 16:533-549.
  43. Mosleh, Z., n Salehi, M.H., Jafari, A., Esfandiarpoor Borujeni, I., Mehnatkesh, M. 2016. The effectiveness of digital soil mapping to predict soil properties over low-relief areas. Environmental Monitoringand Assessment. 188-195.
  44. Mudler, V.L., Bruin, S., and Schaepman, M.E. 2013. Representing major soil variability at regional scale by constrained Latin Hypercube Sampling of remote sensing data. International Journal of Applied Earth Observation and Geoinformation. 21:301-310.
  45. Noller, J. 2010. Applying geochronology in predictive digital mapping of soils. In: Boettinger, J.L., Howell, D.W., Moore, A.C., Hartemink, A.E., Kienast-Brown, S. (Eds.), Digital Soil Mapping: Bridging Research, Environmental Application, and Operation. Springer, Dordrecht, the Netherlands, pp. 43-53.
  46. Pahlavan-Rad,M.R., Khormali, F., Toomanian, N., Colby W. Brungard, C.W.,  Kiani, F., Komaki, C.B., and Bogaert P.. 2014. Mapping and Updating Soil Series Using Random Forest and Conditioned Latin Hypercube Sampling in the Loess Soils of Northern Iran.Geoderma.(232-234): 97-106.
  47. Pahlavan-Rad,M.R., Khormali, F., Toomanian, N., Colby W. Brungard, C.W.,  Kiani, F., Komaki, C.B., and Bogaert P.,. 2016. Legacy soil maps as a covariate in digital soil mapping: A case study from Northern Iran. Geoderma. 279: 141-148.
  48. Rahmati, O., Pourghasemi, H.R., Mellese, A.M., 2016. Application of GIS-based data driven random forest and maximum entropy models for groundwater potential mapping: A case study at Mehran Region, Iran. Catena, 137: 360-372.
  49. Rivero, R.G., Grunwald, S., and Bruland, G.L. 2007. Incorporation of spectral data into multivariate geostatistical models to map soil phosphorus variability in a Florida wetland. Geoderma. 140: 428– 443.
  50. Rossel, R.A.V., Bui, E.N. 2016. A new detailed map of total phosphorus stocks in Australian soil. Science of the Total Environment. 542: 1040-1049.
  51. Rouse, J. W., Hass, R. H., Schell, J. A., and Deering, D.W. 1974, Monitoring vegetation systems in the Great Plains with ERTS. Proceedings 3rd Earth Resource Technology Satellite (ERTS) Symposium, Vol. 1, 48-62.
  52. Scull, P., Franklin, J., and Chadwick, O.A. 2005. The application of classification tree analysis to soil type prediction in a desert landscape. Ecological Modeling. 181:1-15.
  53. Somarathna, P.D.S.N., Malone, B.P.,Minasny, B. 2016. Mapping soil organic carbon content over New South Wales, Australia using local regression kriging. Geoderma Rigional. 7: 38-48.
  54. Sommer, M., Gerke, H.H., Deumlich, D. 2008. Modelling soil landscape genesis a time split‖ approach for hummocky agricultural landscapes. Geoderma. 145: 480–493.
  55. Sreenivas, K., Dadhwal, V.K., Kumar, S., Harsha, G.S., Mitran, T., Sujatha.,  Janaki Rama Suresh, G., Fyzee, M.A., Ravisankar, T, 2016. Digital mapping of soil organic and inorganic carbon status in India. Geoderma. 269: 160-173.
  56. Stoorvogel, J.J., Kempen, B., Heuvelink, G.B.M., and de Bruin, S. 2009. Implementation and evaluation of existing knowledge for digital soil mapping in Senegal. Geoderma. 149: 169-170.
  57. Taghizadeh-Mehrjardi, R., Minasny, B., Sarmadian, F., and Malone, B.P., 2014. Digital mapping of soil salinity in Ardakan region, central Iran.  Geoderma. 213: 15–28.
  58. Taghizadeh-Mehrjardi, R., Nabiollahi, K, Kerry, R. 2016. Digital mapping of soil organic carbon at multiple depths using different data mining techniques in Baneh region, Iran. Geoderma. 266: 98–110.
  59. Vaysse, K., Lagacherie, K. 2015. Evaluating Digital Soil Mapping approaches for mapping GlobalSoilMap soil properties from legacy data in Languedoc-Roussillon (France). Geoderma Regional. 4: 20-30.
  60. Wilson JP, Galant JC .2000. Terrain analysis: principles and applications. Wiley, New York
  61. Yang, L., Jio, Y., Fahmy, S., Zhu, A.X., Hann, S., Burt, J.E., and Qi, F. 2011. Updating Conventional Soil Maps through Digital Soil Mapping. Soil Science Society of American Journal. 75:1044–1053.
  62. Yaalon, D.H., 1975. Conceptual models in pedogenesis: can soil-forming functions be solved?Geoderma. 14: 189-205.