نوع مقاله : فنی ترویجی
نویسندگان
1 دانشجوی دکتری خاکشناسی، دانشکده کشاورزی، دانشگاه تبریز، تبریز، ایران.
2 دانشیار خاکشناسی، دانشکده کشاورزی، دانشگاه تبریز، تبریز، ایران
چکیده
کلیدواژهها
عنوان مقاله [English]
نویسندگان [English]
Climate change caused by increasing atmospheric concentration of CO2 due to fossil fuel combustion and land use change is one of the biggest challenges facing our modern world. Being a persistent and carbon-rich solid material, biochar remains stable for hundreds or even thousands of years in the environment. It can, thus, store carbon to mitigate the effects of climate change and global warming. Addition of biochar to soil may also reduce, directly or indirectly, N2O and other greenhouse gases in soils. It is produced in a process called ‘pyrolysis’, which is indeed the thermal degradation of organic materials in environments with no oxygen or only a limited supply. During pyrolysis, biomass undergoes a variety of physical, chemical, and molecular changes in which it is converted into the three liquid (bio-oil), solid (biochar), and gas phases. All the three phases produced by pyrolysis can be used as fuel. Moreover, addition of biochar to soil not only leads to carbon sequestrationbut also improves soil physical, chemical, and biological properties, thereby playing an important role in sustainable agriculture and soil management by improving soil fertility and plant yield.
کلیدواژهها [English]
9. Alcamo, G.J., A.F. van den Born., B.J. Bouwman., K. de Haan., O. Klein Goldewijk., J. Klepper., R. Krabec., J.G.J. Leemans., A.M.C. Olivier., H.J.M. Toet., and H.J. de Vries. 1994. Modeling the global society-biosphere-climate system. Water Air Soil Poll. 76(2): 37-78.
10. Antal, M.J., and M. Gronli. 2003. The art, science, and technology of charcoal production. Ind Eng Chem Res. 42: 619-1640.
11. Asifa, M., and T. Muneer. 2007. Energy supply, its demand and security issues for developed and emerging economics. Sust Energ Rev. 11:1388-1413.
12. Augustenborg, C.A., S. Hepp., C. Kammann., D. Hagan., O. Schmidt., and C. Müller. 2012. Biochar and earthworm effects on soil nitrous oxide and carbon dioxide emissions. J Environ Qual. 41:1203–1209.
13. Brick, S., and S. Lyutse. 2010. Biochar: Assessing the promise and risks to guide US policy. Natural Resource Defence Council (NRDC), USA.
14. Chen, P., H, Zhou., J,Gan., M, Sun., G, Shang., and L, Liu. 2015. Optimization and determination of polycyclic aromatic hydrocarbons in biochar‐based fertilizers. JSep Sci. 38(5):864-70.
15. Chintala, R., J. Mollinedo., T.E. Schumacher., D.D. Malo., and J.L. Julson. 2014. Effect of biochar on chemical properties of acidic soil. Arch Agron Soil Sci. 60(3):393-404.
16. Dicke, C., G. Lanza., J. Mumme., R. Ellerbrock., and J. Kern. 2014. Effect of HTC-char application on trace gas emissions from two sandy soil horizons. J Environ Qual. 43:1790–1798.
17. Downie, A., A. Crosky and P. Munroe 2009. Physical properties of biochar. In Biochar for environmental management : science and technology Eds. J. Lehmann and S. Joseph. Earth scan, London ; Sterling, VA, pp. 13-32.
18. Feng, Y., Y. Xu., Y. Yu., Z. Xie., and X. Lin. 2012.Mechanisms of biochar decreasing methane emission from Chinese paddy soils. Soil Biol Biochem. 46:80–88.
19. Gao, H., X, Chen., W, Zhang., X, He, and Z, Geng. 2013. Physicochemical properties and efficiences of biochar and biochar-based nitrogenous fertilizer. J Nat Sci Ed. 41(4):69-85.
20. Haiying, G., H, Xusheng., G, Zengchao., S,Diao.,and Y, Jinyan. 2011. Effects of biochar and biochar-based nitrogen fertilizer on soil water-holding capacity. Chin AgricSci Bull.27(24):207-13.
21. Hernandez-Mena, L.E., A.A. Pécoraa., and A.L. Beraldob. 2014. Slow pyrolysis of bamboo biomass: Analysis of biochar properties. ChemEngin. 37:115-120.
22. Hu, B., K. Wang., L. Wu., S. Yu., M. Antonietti., and M. Titirici. 2010. Engineering carbon materials from the hydrothermal carbonization process of biomass. Adv Mater. 22(7):813-828.
23. Ioannidou, O., and A. Zabaniotou. 2007. Agricultural residues as precursors for activated carbon production- A review. Renew Sustain Energy Rev. 11:1966–2005.
24. Keiluweit, M., P.S. Nico., M.G. Johnson., and M. Kleber. 2010. Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ Sci Technol. 44(4):1247-53.
25. Karhu, K., T. Mattila., I. Bergström., and K. Regina. 2011. Biochar addition to agricultural soil increased CH4 uptake and water holding capacity–results from a short-term pilot field study. Agric Ecosyst Environ. 140:309–313.
26. Kameyama, K., Y. Shinogi., T. Miyamoto., and K. Agarie. 2010. Estimation of net carbon sequestration potential with farmland application of bagasse charcoal: life cycle inventory analysis through a pilot sugarcane bagasse carbonisation plant. Soil Res. 48:586–592.
27. Kammann, C., S. Ratering, C. Eckhard, and C. Müller. 2012. Biochar and hydrochar effects on greenhouse gas (carbon dioxide, nitrous oxide, methane) effluxes from soils. J Environ Qual. 41:1052–1066.
28. Laird, D.A., R.C. Brown., J.E. Amonette., and J. Lehmann. 2009. Review of the pyrolysis platform for coproducing bio-oil and biochar. Biofuels Bioprod Bioref. 3: 547–562.
29. Lehmann, J. 2007. Bio-energy in the black, Frontiers in Ecology and the Environment, vol 5, pp.381–387.
30. Lehmann, J., M.C. Rillig., J. Thies., C.A. Masiello., W.C. Hockaday., and D. Crowley. 2011. Biochar effects on soil biota: A review. Soil Biol Biochem. 43: 1812-1836.
31. Lehmann, J., and S. Joseph. 2009. Biochar for Environmental Management: Science and Technology. Earthscan, London & Sterling, VA. 416p.
32. Libra, J.A., K.S. Ro., C. Kammann., A. Funke., N.D. Berge., Y. Neubauer., and J.Kern. 2011. Hydrothermal carbonization of biomass residuals: A comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels. 2(1):71-106.
33. Manyà, J.2012. Pyrolysis for Biochar Purposes: A Review to Establish Current Knowledge Gaps and Research Needs. Environ. Sci. Technol. 46, 7939−7954.
34. Mukherjee, A., R. Lal., and A.R. Zimmerman. 2014. Effects of biochar and other amendments on the physical properties and greenhouse gas emissions of an artificially degraded soil. Sci Total Environ. 487:26-36.
35. NOAA Annual Greenhouse Gas Index (AGGI). 2017. [Online]. Available at www.esrl.noaa.gov/gmd/aggi/aggi.html.Updated Spring 2017.
36. Novotny, E.H., C.M.Bd.F, Maia.,M.Td.M, Carvalho, and B.E,Madari. 2015. Biochar: pyrogenic carbon for agricultural use-a critical review. Rev Bras Ciênc Solo.39(2):321-44.
37. Novotny, E.H., C.M.B.dF. Maia., M.T.dM. Carvalho., and B.E. Madari. 2015. Biochar: pyrogenic carbon for agricultural use-a critical review. Revista Brasileira de Ciência do Solo. 39(2):321-44.
38. Pignatello, J.J., S. Kwon., and Y.F. Lu. 2006. Effect of natural organic substances on the surface and adsorptive properties of environmental black carbon (char): attenuation of surface activity by humic and fulvic acids. Environ Sci Technol. 40, 7757–7763.
39. Qayyum, M.F., D. Steffens, H.P. Reisenauer., and S. Schubert. 2012. Kinetics of carbon mineralization of biochars compared with wheat straw in three soils. J Environ Qual. 41:1210–1220.
40. Rahmstort, S., J. Morgan., A. Levermann., and K. Sach. 2010. Global Sustainability-a Nobel Cause. Cambridge University Press.p. 68.
41. Sano, H. 2002. Biomass Handbook, Japan Institute of Energy.Ohm-sha.311-323.
42. Singh, B.P., B.J. Hatton., B. Singh., A.L. Cowie., and A. Kathuria. 2010. Influence of biochars on nitrous oxide emission and nitrogen leaching from two contrasting soils. J Environ Qual. 39:1224–1235.
43. Sohi, S.P., E. Krull., E. Lopez-Capel., and R. Bol. 2010.A review of biochar and its use and function in soil.AdvAgron. Vol 105.SanDiego, Elsevier Academic Press Inc. pp: 47-82.
44. Steinbeiss, S., G. Gleixner., and M. Antonietti. 2009. Effect of biochar amendment on soil carbon balance and soil microbial activity. Soil Biol Biochem. 41:1301–1310.
45. Stoyle, A. 2011. Biochar Production for Carbon Sequestration [dissertation]. Shanghai Jiao Tong University.
46. Taghizadeh-Toosi, A., T.J. Clough., L.M. Condron., R.R. Sherlock., C.R. Anderson., and R.A. Craigie. 2011. Biochar incorporation into pasture soil suppresses in situ nitrous oxide emissions from ruminant urine patches. J Environ Qual. 40:468–476.
47. Titirici, M.M. 2012. Hydrothermal Carbonisation: A Sustainable Alternative to Versatile Carbon Materials [dissertation]. Universität Potsdam Potsdam.
48. Titirici, M. 2013. Sustainable carbon materials from hydrothermal processes.UK, John Wiley and Sons, Ltd.
49. Verheijen, F., S. Jeffery., A.C. Bastos., M. Van Der Velde., and I. Diafas. 2010. Biochar Application to Soils. A Critical Scientific Review of Effects on Soil Properties, Processes and Functions. JRC Scientific and Technical Report.
50. Wang, Y., Y. Hu., X. Zhao., S. Wang., and G. Xing. 2013. Comparisons of biochar properties from wood material and crop residues at different temperatures and residence time. Energy and Fuels. 27(10):5890-9.
51. Yoo, G., and H. Kang. 2012. Effects of biochar addition on greenhouse gas emissions and microbial responses in a short-term laboratory experiment. J Environ Qual. 41:1193–1202.
52. Zhang, A. L. Cui., G. Pan., L. Li., Q. Hussain., and X. Zhang. 2010. Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain, China. Agric., Ecosyst Environ., 2010, 139, 469–475.