ارزیابی شاخص‌های جذب و انتقال عناصر غذائی سه پایه‏ مرکبات

نوع مقاله : فنی ترویجی

نویسندگان

1 مؤسسه تحقیقات علوم باغبانی، پژوهشکده مرکبات و میوه‌های نیمه‌گرمسیری، سازمان تحقیقات، آموزش و ترویج کشاورزی، رامسر

2 عضو هیات علمی مرکز تحقیقات مازندران

3 مؤسسه تحقیقات علوم باغبانی، پژوهشکده مرکبات و میوه‌های نیمه‌گرمسیری، سازمان تحقیقات، آموزش و ترویج کشاورزی، رامسر؛

چکیده

به دلیل اینکه پایه‏ها سیستم ریشه یک درخت را تشکیل می‏دهند، بنابراین بر جذب آب و عناصر غذایی و انتقال آنها به قسمت‏های مختلف گیاه اثرگذار می‏باشند. تحقیق حاضر با هدف ارزیابی اثر سه پایه متداول در شمال کشور (شامل: نارنج، سیتروملو و سیترنج) بر مقدار جذب و توزیع عناصر غذائی بین بخشهای مختلف گیاه و نیز بر شاخص تجمع و انتقال عناصر غذائی اجرا شد. بدین‏منظور، پایه­های یک‏ساله از سیتروملو، نارنج و سیترنج در گلدان‏های پلاستیکی تحت شرایط گلخانه در خاکی لومی کشت شدند. پس از شش ماه، پایه‏ها برداشت و مقدار وزن خشک و نیز غلظت فسفر، پتاسیم، کلسیم، آهن، منگنز، روی و مس در ریشه، ساقه و برگ اندازهگیری شد. در ادامه، شاخص تجمع و انتقال عناصر غذائی با استفاده از روش تجزیه عامل به منظور تمایز پایههای مختلف از لحاظ جذب عناصر غذائی محاسبه شد. نتایج نشان داد که سیترنج در جذب فسفر و آهن، سیتروملو در جذب پتاسیم و مس، نارنج در جذب کلسیم، منگنز، نسبت به دیگر پایه‏های بررسی‌شده برتری داشتند. علاوه­ بر این، رتبه پایه­ها از نظر شاخص تجمع عناصر غذائی به صورت نارنج>سیتروملو~سیترنج و نیز رتبه پایهها از نظر شاخص انتقال نسبی عناصر غذائی به‏صورت سیتروملو>سیترنج>نارنج بود. نتایج مطالعه حاضر نشان داد که پایههای مرکبات رفتار تغذیه­ای متفاوتی داشته و توانائی این پایهها برای جذب و انتقال عناصر غذائی متفاوت است.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of nutrient accumulation and translocation indices in three citrus rootstocks

نویسندگان [English]

  • Tahereh Raiesi 1
  • Ali Asadi kangarshahi 2
  • Morteza Gholmohammadi 3
1 Horticultural Science Research Institute, Citrus and Subtropical Fruit Research Center, Agricultural Research and Education Organization (AREO), Ramsar
2 Assistant professor, Soil and Water Research Department, Mazandaran Agricultuarl and Nutural Resources Research and Education
3 Horticultural Science Research Institute, Citrus and Subtropical Fruit Research Center, Agricultural Research and Education Organization (AREO), Ramsar;
چکیده [English]

Root systems in citrus trees develop from rootstocks. They have, thus, direct effects on water and nutrient uptake and translocation. The present study was conducted to evaluate the effects of three rootstocks common in northern Iran (i.e., sour orange, Swingle citrumelo, and Troyer citrange) on the nutrient uptake, translocation, and accumulation (NAI) as well as their translocation indices (NTI). For this purpose, one-year old seedlings of sour orange, Swingle citrumelo, and Troyer citrange were cultivated in a loamy soil under glasshouse conditions. After six months, the seedlings were harvested to measure their dry weights as well as their leaf, stem, and root concentrations of phosphorus, potassium, calcium, iron, manganese, zinc, and copper. Also, the rootstocks investigated were discriminated based on their nutrient accumulation and translocation indices as determined by factor analysis. Results showed the superiority of Troyer citrange in terms of phosphorus and iron uptake; citrumelo in terms of potassium and copper uptake; and common sour orange in terms of calcium and manganese uptake. The order recorded for the rootstocks in terms of their nutrient accumulation indices was sour orange>Troyer citrange~Swingle citrumelo. It was also found that the nutrient translocation indices of the three citrus rootstocks decreased in the following order: Swingle citrumelo > Troyer citrange > sour orange. Clearly, the citrus rootstocks investigated exhibited differential nutritional behaviors and different capacities with respect to utilizing plant nutrient elements.

کلیدواژه‌ها [English]

  • : Citrange
  • Citrumelo
  • Macro- and micro-nutrients
  • Sour orange
  1. 1.                   آمارنامه کشاورزی محصولات باغبانی وزارت جهاد کشاورزی، 1394، معاونت برنامه‌ریزی و اقتصادی، مرکز فناوری اطلاعات و ارتباطات، تهران، ایران. قابل دسترسی در آدرس: http://www.maj.ir.
    2.                   طباطبائی، س.، رزازی، ع.، خوشگفتارمنش، ا.ح.، خدائیان، ن.، مهرابی، ز.، عسگری، ا.، فتحیان، ش. و رمضان‌زاده، ف. 1390. تاثیر کمبود آهن بر غلظت، جذب و انتقال نسبی آهن، روی و منگنز در برخی از محصولات زراعی با آهن کارائی مختلف در شرایط آبکشت. نشریه آب و خاک (علوم و صنایع کشاورزی) جلد 25، شماره 4، صفحه­های 735-728.
    1. محمدی، ج. 1385. پدومتری: آمار کلاسیک. انتشارات پلک، تهران.
    2. Andrews, S.S., and Carroll, C.R. 2001. Designing a soil quality assessment tool for sustainable agroecosystem management. Ecological Applications, 11: 1573–1585.
    3. Andrews, S.S., Mitchell, J.P., Mancinelli, R., Karlen, D.L., Hartz, T.K., Horwath, W.R., Pettygrove, G.S., Scow, K.M., and Munk, D.S. 2002. On-farm assessment of soil quality in California’s Central Valley. Agronomy Journal, 94: 12–23.
    4. Bitters, W.P. 1986. Citrus Rootstocks: Their Characters and Reactions. UC Riverside Science Library 236 p. http://www.citrus variety.ucr.edu/links/documents/Bitters. pdf.
    5. Bremner, J.M. 1996. Nitrogen-total. p. 1085-1121. In: D.L. Sparks (ed.) Methods of Soil Analysis. Part 3 chemical methods. SSSA, Madison, Wisconsin, USA.
    6. Cimen, B. , Yesiloglu, T. , Incesu, M., and Yilmaz, B. 2014. Growth and photosynthetic response of young ‘Navelina’ trees budded on to eight citrus rootstocks in response to iron deficiency. New Zealand Journal of Crop and Horticultural Science, 42: 170-182
    7. Davies, F.S., and Albrigo, L.G. 1994. Citrus. Wallingford, UK: CAB International.
    8. Dou, H., and Alva, A.K. 1998. Nitrogen uptake and growth of two citrus rootstock seedlings in a sandy soil receiving different controlled-release fertilizer sources. Biology and Fertility of Soils, 26:169–172
    9. Dubey, A.K. and Sharma R.M. 2016. Effect of rootstocks on tree growth, yield, quality and leaf mineral composition of lemon (Citrus limon (L.) Burm. Scientia Horticulturae, 200: 131–136
    10. FAO. 2014. FAOSTAT, production (www.fao.org)
    11. Gee, G.H., and J.W. Bauder. 1986. Particle size analysis. p. 383-409. In: A. Klute (ed.) Methods of Soil Analysis. Part 2 physical properties. SSSA, Madison, Wisconsin, USA.
    12. Hall, J.L. 2002. Cellular mechanisms for heavy metal detoxification and tolerance. Journal of Experimental Botany, 53: 1–11.
    13. Helmke, Ph.A., and D.L. Sparks. 1996. Lithium, sodium, potassium, rubidium and cesium. In: D.L. Sparks (ed.) Methods of Soil Analysis. Part 3 chemical methods. SSSA, Madison, Wisconsin, USA.
    14. Hippler, W.R.,Cipriano, D.O., Boaretto, R.M., Quaggio, J.A., Gaziola, S.A., Azevedo, R.A., and Mattos-Jr. D. 2016. Citrus rootstocks regulate the nutritional status and antioxidant system of trees under copper stress. Environmental and Experimental Botany, 130:42–52
    15. Kalra, Y.P. 1997. Handbook of reference methods for plant analysis. CRC, London, UK.
    16. Martinez-Cuenca, M.R., Forner-Giner, M.A., Iglesias, D.J., Primo-Millo, E., and Legaz F. 2013. Strategy I responses to Fe-deficiency of two citrus rootstock differing in their tolerance to iron chlorosis. Scientia Horticulturae, 153: 56-63.
    17. Mattos, D., Quaggio, J., Cantarella, A.H., and Alva, A.K. 2003. Nutrient content of biomass components of hamlin sweet orange trees. Scientia Agricola, 60: 155-160
    18. Mattos, D., Quaggio, J.A., Cantarella, H., Alva, A.K. and Graetz, D.A. 2006. Response of young citrus trees on selected rootstocks to nitrogen, phosphorus, and potassium fertilization. Journal of Plant Nutrition, 29: 1371–1385.
    19. Pestana, M., Varennes, A., Abadia, J., and Faria, E.A. Differential tolerance to iron deficiency of citrus rootstocks grown in nutrient solution. Scientia Horticulturae, 104: 25–36.
    20. Sharma, R.M., Dubey, A.K., Awasthi, O.P. and Kaur Ch. 2016. Growth, yield, fruit quality and leaf nutrient status of grapefruit (Citrus paradisi Macf.): Variation from rootstocks. Scientia Horticulturae, 210: 41–48.
    14.              Grace, J.K., Sharma, K.L. , Seshadri, K.V. , Ranganayakulu, C., Subramanyam, K.V., Bhupal Raj, G., Sharma, S.H.K., Ramesh, G., Gajbhiye, P.N. and Madhavi, M. 2012. Evaluation of Sweet Orange (Citrus sinensis L. Osbeck) cv. Sathgudi Budded on Five Rootstocks for Differential Behavior in Relation to Nutrient Utilization in Alfisol. Communications in Soil Science and Plant Analysis, 43: 985-1014.
    19.              Lindsay, W. L. and W. A. Norvell. 1978. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society of America Journal, 42: 421-428.
    20.              Loeppert, R.H., and D.L. Sparks. 1996. Carbonate and gypsum. p. 437-474. In D.L. Sparks (ed.) Methods of Soil Analysis. Part 3, chemical methods. SSSA, Madison, Wisconsin, USA.
    24.              McDonald, A.J.S., Ericsson, T., and Larsson, C. 1996. Plant nutrition, dry matter gain and partitioning at the wholeplant level. Journal of Experimental Botany, 47: 1245–1253.
    25.              Ngullie, E., Singh, A.K., Sema, A. and Srivastava, A.K. 2015. Citrus Growth and Rhizosphere Properties. Communications in Soil Science and Plant Analysis, 46: 1540-1550.
    26.              Nelson, D.W., and L.E. Sommers. 1996. Total carbon organic carbon and organic matter. p. 961-1011. In D.L. Sparks (ed.) Methods of Soil Analysis. Part 3, chemical methods. SSSA, Madison, Wisconsin, USA.
    27.              Olsen, S.R., and L.E. Sommers. 1982. Phosphorus. p. 403-430. In: A. Klute (ed.) Methods of Soil Analysis. Part1 ‌‌chemical and biological properties. SSSA, Madison, Wisconsin, USA.
    29.              Sharma, S. 1996. Applied Multivariate Techniques. John Wiley & Sons, New York.
    31.              Toplu, C., Uygur, V., Kaplankıran, M., Demirkeser, T.H. and Yıldız, E. 2012. Effect of citrus rootstocks on leaf mineral composition of ‘okitsu’, ‘clausellina’, and ‘silverhill’ mandarin cultivars. Journal of Plant Nutrition, 35: 1329–1340.
    32.              Zambosi, F. B., Mattos, D. Jr., Boaretto, R. M., Quaggio, J.A., Muraoka, T. and Syvertsen, J.P. 2012. Contribution of phosphorus (32P) absorption and remobilization for citrus growth. Plant Soil, 355: 353–362.
    33.              Zambosi F.B., Mattos Jr. D., Quaggio J.A., Cantarella H. and Boaretto R.M. 2013. Phosphorus Uptake by Young Citrus Trees in Low- P Soil Depends on Rootstock Varieties and Nutrient Management. Communications in Soil Science and Plant Analysis, 44: 2107-2117.
    34.              Zhou, G.F., Peng, Sh.A., Liu, Y.Z., Wei, Q.J., Han, J. and Islam M.Z. 2014. The physiological and nutritional responses of seven different citrus rootstock seedlings to boron deficiency. Trees, 28: 295–307.