مدل‌های تبدیلی رادیونوکلوئیدهای پلوتونیوم برای برآورد میزان جابجایی خاک

نوع مقاله : فنی ترویجی

نویسندگان

1 دانشجوی دکتری، گروه علوم و مهندسی خاک، دانشکده مهندسی و فناوری کشاورزی، دانشگاه تهران

2 کارشناس ارشد پژوهشکده کشاورزی هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، تهران، ایران.

3 استادیار پژوهشکده کشاورزی هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای

4 عضو هیأت علمی بازنشسته سازمان تحقیقات، آموزش و ترویج کشاورزی

5 دانشیار گروه علوم و مهندسی خاک، دانشکده مهندسی و فناوری کشاورزی، دانشگاه تهران

چکیده

تخمین­های کمی و قابل اعتماد از فرآیندهای تخریب خاک برای بهینه کردن و همین­طور موثر بودن عملیات مدیریت اراضی و پایداری سامانه­های کشاورزی امری ضروری است. در سال­های اخیر ایزوتوپ­های پلوتونیوم-240+239 (Pu240+239) به عنوان ردیاب جدید در تحقیقات فرسایش خاک و رسوب پیشنهاد شده است. ایزوتوپ­های Pu240+239 مزایایی از جمله نیمه عمر بالا، قابل دسترس بودن در محیط، دقت مناسب روش­های اندازه­گیری و یکنواخت بودن مقدار آن­ها در نقاط مرجع را نسبت به دیگر ایزوتوپ­های موجود دارا می­باشد. برای تبدیل مقدار ایزوتوپ­های پلوتونیوم-240+239 (Pu240+239)  به میزان جابجایی خاک، مدل­های تبدیلی مناسب مورد نیاز می­باشد. تاکنون تحقیقات اندکی در مورد کاربرد ایزوتوپ­های پلوتونیوم در فرسایش خاک صورت گرفته است و از این رو تنها تعداد محدودی مدل برای محاسبه فرسایش خاک با استفاده از پلوتونیوم پیشنهاد شده است که هر کدام از این مدل­ها با محدودیت­هایی همراه هستند. این مقاله با هدف بررسی مزایا و محدودیت­های مدل­های موجود جهت تبدیل فعالیت ایزوتوپ­های پلوتونیوم-240+239 (Pu240+239)  به میزان جابجایی خاک و تعیین مدل مناسب در این زمینه تهیه گردید. با توجه به مزایایی از قبیل مستقل بودن از نوع کاربری اراضی، تعیین دقیق شکل پروفیل خاک اندازه­گیری شده، شبیه­سازی رفتار دقیق رادیونوکلوئید­های ریزشی تحت شرایط مختلف و قابل دسترس و قابل ویرایش بودن کد مدل MODERN در مقایسه با سایر مدل­های موجود، این مدل به عنوان مدل مناسب جهت تخمین میزان فرسایش و رسوبگذاری با استفاده از این نوع از رادیونوکلوئیدها توصیه می­گردد.

کلیدواژه‌ها


عنوان مقاله [English]

Conversion Models for Estimating Soil Redistribution Rates Using Plutonium Radionuclides (239 + 240Pu)

نویسندگان [English]

  • Morad Mirzai 1
  • Rayehe Mirkhani 2
  • Ebrahim Moghiseh 3
  • Mohammad Hassan Roozitalab 4
  • Hossein Asadi 5
1 Ph.D Student, Department of Soil Science and Engineering, Faculty of Agricultural Engineering and Technology, Tehran University
2 M.Sc., Nuclear Agriculture School, Nuclear Science and Technology Research Institute.
3 Assistant Professor of Soil Science, Nuclear Agriculture School, Nuclear Science and Technology Research Institute.
5 Associate Prof. Department of Soil Science and Engineering, Faculty of Agricultural Engineering and Technology, Tehran University
چکیده [English]

Quantitative and reliable estimates of soil degradation processes are essential not only for optimizing land management practices but also for ensuring and assessing their effectiveness and the sustainability of the agricultural systems impacted. Application of plutonium (239 + 240Pu) isotopes as new tracers in soil erosion and sedimentation research is a recent development. Compared to other isotopes, these offer such advantages as long half-life, availability in different environments, relatively easy determination methods using highly sensitive techniques, and consistent measurements at reference sites. However, appropriate conversion models are needed to convert the inventory of plutonium (239 + 240Pu) isotopes into soil redistribution rates. Given the few studies reported on the use of plutonium isotopes in soil erosion research, it is natural that only a limited number of models have been so far developed for computing soil erosion rates using plutonium, each of which has its own limitations. This review study will identify and introduce an appropriate model for converting (239 + 240Pu) inventories into soil redistribution rates by exploring the advantages and limitations associated with the models presently available. MODERN is, thus, selected from among the models reviewed and recommended for estimating soil erosion and sedimentation based on its advantages of independence from the type of land use, accurate determination of redistribution in the soil profile, simulation of the exact behavior of fallout radionuclides under different conditions, and its accessible and editable code, all of which make it superior to rival models.

کلیدواژه‌ها [English]

  • Land degradation
  • Radioisotopes
  • Soil erosion
  1. Aarkrog, A., H. Dahlgaard, S.P. Nielsen, A.V. Trapeznikov, I.V. Molchanova, V.N. Pozolotina, E.N. Karavaeva, P.I. Yushkov, and G.G. Polikarpov. 1997. Radioactive inventories from the Kyshtym and Karachay accidents: estimates based on soil samples collected in the South Urals (1990–1995). Science of the total environment. 201(2): 137-154.
  2. Alewell, C., K. Meusburger, G. Juretzko, L. Mabit, and M.E. Ketterer. 2014. Suitability of 239+240Pu and 137Cs as tracers for soil erosion assessment in mountain grasslands. Chemosphere. 103:274-280.
  3. Alewell, C., A. Pitois, K. Meusburger, M. Ketterer, and L. Mabit. 2017. 239+240Pu from “contaminant” to soil erosion tracer: Where do we stand? Earth-Science Reviews. 172: 107-123.
  4. Arata, L., K. Meusburger, E. Frenkel, A. A’Campo-Neuen, A.R. Iurian, M.E. Ketterer, L. Mabit, and C. Alewell.  2016a. Modelling Deposition and Erosion rates with RadioNuclides (MODERN)–Part 1: A new conversion model to derive soil redistribution rates from inventories of fallout radionuclides. Journal of environmental radioactivity. 162: 45-55.
  5. Arata, L., C. Alewell, E. Frenkel, A. A’Campo-Neuen, A.R. Iurian, M.E. Ketterer, L. Mabit, and K. Meusburger. 2016b. Modelling Deposition and Erosion rates with RadioNuclides (MODERN)–Part 2: A comparison of different models to convert 239+ 240Pu inventories into soil redistribution rates at unploughed sites. Journal of environmental radioactivity. 162: 97-106.
  6. Beasley, T.M., J.M. Kelley, K.A. Orlandini, L.A. Bond, A. Aarkrog, A.P. Trapeznikov, and V.N. Pozolotina. 1998. Isotopic Pu, U, and Np signatures in soils from Semipalatinsk-21, Kazakh Republic and the southern Urals, Russia. Journal of environmental radioactivity. 39(2: 215-230.
  7. Boulyga, S. F., Desideri, D., Meli, M. A., Testa, C., & Becker, J. S. 2003. Plutonium and americium determination in mosses by laser ablation ICP-MS combined with isotope dilution technique. International Journal of Mass Spectrometry, 226(3), 329-339.
  8. Cooper, L.W., Kelley, J.M., Bond, L.A., Orlandini, K.A., Grebmeier, J.M., 2000. Sources of the transuranic elements plutonium and neptunium in artic marine sediments. Marine Chemistry 69, 253-276.
  9. Eriksson, M., P. Lindahl, P. Roos, H. Dahlgaard, and E. Holm. 2008. U, Pu, and Am nuclear signatures of the Thule hydrogen bomb debris. Journal of Environmental science & technology. 42(13): 4717-4722.
  10. Fifield, L. K. 2008. Accelerator mass spectrometry of the actinides. Quaternary Geochronology, 3(3), 276-290.
  11. Foster, G.R., and T.E. Hakonson. 1987. Erosional Losses of Fallout Plutonium, Symposium on Environmental Research for Actinide Elements. Marine Inst.; Pacific Northwest Lab., Richland, WA (USA), Sapelo Island (USA); Georgia University, pp. 7-11 (Nov 1984).
  12. Hoo, W. T., L. K. Fifield, S.G.Tims, T.Fujioka, and N. Mueller. 2011. Using fallout plutonium as a probe for erosion assessment. Journal of environmental radioactivity. 102(10): 937-942.
  13. IAEA, 2014. Guidelines for Using Fallout Radionuclides to Assess Erosion and Effectiveness of Soil Conservation Strategies. IAEA-TECDOC-1741. International Atomic Energy Agency Publication. http://www-pub.iaea.org/MTCD/Publications/ PDF/TE-1741_web.pdf (213 pp).
  14. Jakopič, R., Tavčar, P., & Benedik, L. 2007. Sequential determination of Pu and Am radioisotopes in environmental samples; a comparison of two separation procedures. Applied radiation and isotopes, 65(5), 504-511.
  15. Joshi, S.R., and B.S. Shukla. 1991. The role of the water soil distribution coefficient in the watershed transport of environmental radionuclides. Earth and planetary science letters. 105(1-3): 314-318. 105, 314-318.
  16. Ketterer, M.E., Hafer, K.M., Mietelski, J.W., 2004. Resolving Chernobyl vs. global fallout contributions in soils from Poland using Plutonium atom ratios measured by inductively coupled plasma mass spectrometry. J. Environ. Radioact. 73, 183-201.
  17. Lal, R., S.G.Tims, L.K. Fifield, R.J. Wasson, and D. Howe. 2013. Applicability of Pu-239 as a tracer for soil erosion in the wet-dry tropics of northern Australia. Nucl. Instrum. Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 294: 577-583.
  18. Mabit, L., M. Benmansour, and D.E. Walling. 2008. Comparative advantages and limitations of the fallout radionuclides 137Cs, 210Pbex and 7Be for assessing soil erosion and sedimentation. Journal of environmental radioactivity. 99(12):1799-1807.
  19. Mabit, L., M. Benmansour, J.M. Abril, D.E. Walling, K. Meusburger, A.R. Iurian, C. Bernard, S. Tarján, P.N. Owens, W.H. Blake, and C. Alewell.  2014. Fallout 210Pb as a soil and sediment tracer in catchment sediment budget investigations: a review. Earth-science reviews. 138: 335-351.
  20. Mabit, L., C. Bernard, A.L.Z. Yi, E. Fulajtar, G. Dercon, M. Zaman, A. Toloza, and L. Heng. 2018b. Promoting the use of isotopic techniques to combat soil erosion: an overview of the key role played by the SWMCN Subprogramme of the Joint FAO/IAEA Division over the last 20 years. Land Degradation & Development.
  21. Mabit, L., M. Gibbs, M. Mbaye, K. Meusburger, A. Toloza, C. Resch, A. Klik, A. Swales, and C. Alewell. 2018a. Novel application of Compound Specific Stable Isotope (CSSI) techniques to investigate on-site sediment origins across arable fields. Geoderma: 316: 19-26.
  22. Mabit, L., K. Meusburger, E. Fulajtar, and C. Alewell, 2013. The usefulness of 137Cs as a tracer for soil erosion assessment: A critical reply to Parsons and Foster (2011). Earth-Science Reviews. 127: 300-307.
  23. McHugh, M. 2007. Short‐term changes in upland soil erosion in England and Wales: 1999 to 2002. Geomorphology. 86: 204–213.
  24. Meusburger, K., L. Mabit, M. Ketterer, J.H. Park, T. Sandor, P. Porto, and C. Alewell. 2016. A multi-radionuclide approach to evaluate the suitability of 239+ 240Pu as soil erosion tracer. Science of the Total Environment. 566:1489-1499.
  25. Momoshima, N., Kakiuchi, H., Maeda, Y., Hirai, E., & Ono, T. 1997. Identification of the contamination source of plutonium in environmental samples with isotopic ratios determined by inductively coupled plasma mass spectrometry and alpha-spectrometry. Journal of Radioanalytical and Nuclear Chemistry, 221(1-2), 213-217.
  26.  Montero, M. R., Sánchez, A. M., Vázquez, M. C., & Murillo, J. G. 2000. Analysis of plutonium in soil samples. Applied Radiation and Isotopes, 53(1), 259-264.
  27.  Moreno, J., Vajda, N., Danesi, P. R., Larosa, J. J., Zeiller, E., & Sinojmeri, M. 1997. Combined procedure for the determination of90Sr, 241Am and Pu radionuclides in soil samples. Journal of radioanalytical and Nuclear Chemistry, 226(1-2), 279-284.
  28. Muller, R.N., D.C. Sprugel, and B. Kohn. 1978. Erosional transport and deposition of plutonium and cesium in 2 small midwestern watersheds. Journal of Environmental Quality. 7(2: 171-174.
  29. Muramatsu, Y., W. Rühm, S. Yoshida, K. Tagami, S. Uchida, and E. Wirth. 2000. Concentrations of 239Pu and 240Pu and their isotopic ratios determined by ICP-MS in soils collected from the Chernobyl 30-km zone. Environmental science & technology. 34(14): 2913-2917.
  30. Onishi, Y., O.V. Voitsekhovich, and M.J. Zheleznyak. 2007. Chernobyl-What Have We Learned? (p. 289). Heidelberg: Springer.
  31. Oughton, D.H., Fifield, L.K., Day, J.P., Cresswell, R.C., Skipperud, L., Di Tada, M.L., Salbu, B., Strand, P., Drozcho, E., Mokrov, Y., 2000. Plutonium from Mayak: measurements of isotope ratios and activities using accelerator mass spectrometry. Environmental Science and Technology 34, 1938-1945.
  32. Porto, P., D.E. Walling, and V. Ferro. 2001. Validating the use of caesium-137 measurements to estimate soil erosion rates in a small drainage basin in Calabria, Southern Italy. Journal of Hydrology. 248(1-4): 93-108.
  33. Porto, P., D.E. Walling, V. Ferro, and C. Di Stefano. 2003. Validating erosion rate estimates provided by caesium-137 measurements for two small forested catchments in Calabria, southern Italy. Land degradation and development. 14(4): 389-408.
  34. Qiao, J., Hou, X., Miró, M., & Roos, P. 2009. Determination of plutonium isotopes in waters and environmental solids: a review. Analytica chimica acta, 652(1), 66-84.
  35. Ritchie, J.C., and J.R. McHenry. 1990. Application of radioactive fallout cesium-137 for measuring soil erosion and sediment accumulation rates and patterns: a review. Journal of environmental quality. 19(2): 215-233.
  36. Ritchie, J.C., and C.A. Ritchie. 2001. Bibliography of Publications of Cesium-137 Studies Related to Erosion and Sediment Deposition. USDA-ARS Hydrology and Remote Sensing Laboratory.
  37. Schimmack, W., K. Auerswald, and K. Bunzl. 2002. Estimation of soil erosion and deposition rates at an agricultural site in Bavaria, Germany, as derived from fallout radiocesium and plutonium as tracers. Naturwissenschaften. 89(1): 43-46.
  38. Schneider, S., C. Walther, S. Bister, V. Schauer, M. Christl, H.A. Synal, K. Shozugawa, and G. Steinhauser. 2013. Plutonium release from Fukushima Daiichi fosters the need for more detailed investigations. Scientific reports, 3, p.2988.
  39. Skipperud, L., Oughton, D.H., Fifield, L.K., Lind, O.C., Tims, S.G., Brown, J., Sickel, M., 2004. Plutonium isotope ratios in the Yenisey and Ob estuaries. Applied Radiation and Isotopes 60, 589-593.
  40. Taylor, A., W.H. Blake, H.G. Smith, L. Mabit, and M.J. Keith-Roach. 2013. Assumptions and challenges in the use of fallout beryllium-7 as a soil and sediment tracer in river basins. Earth-science reviews. 126: 85-95.
  41. Tims, S.G., Everett, S.E., Fifield, L.K., Hancock, G.J., Bartley, R., 2010. Plutoniumas a tracer of soil and sediment movement in the Herbert River, Australia. Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms 268, 1150-1154.
  42. Tims, S.G., Hancock, G.J., Wacker, L., Fifield, L.K., 2004. Measurement of Pu and Ra isotopes in soils and sediments by AMS. Nuclear Instruments and Methods in Physics Research B 223-224, 796-801.
  43. Tiwari, K.R., B.K. Sitaula, R.M. Bajracharya, and T. Brresen. 2009. Runoff and soil loss responses to rainfall, land use, terracing and management practices in the Middle Mountains of Nepal. Acta Agriculturae Scandinavica Section B–Soil and Plant Science. 59(3):197-207.
  44. Tonouchi, S., Habuki, H., Katoh, K., Yamazaki, K., & Hashimoto, T. 2002. Determination of plutonium by inductively coupled plasma mass spectrometry (ICP-MS). Journal of radioanalytical and nuclear chemistry, 252(2), 367-371.
  45. Valentin, C., F. Agus, R. Alamban, A. Boosaner, J.P. Bricquet, V. Chaplot, T. De Guzman, A. De Rouw, J.L. Janeau, D. Orange, and K. Phachomphonh. 2008. Runoff and sediment losses from 27 upland catchments in Southeast Asia: Impact of rapid land use changes and conservation practices. Agriculture, Ecosystems & Environment. 128(4: 225-238.
  46. Van Pelt, R.S., and M.E. Ketterer. 2013. Use of anthropogenic radioisotopes to estimate rates of soil redistribution by wind II: the potential for future use of 239 + 240Pu. Aeolian Res. 9: 103-110.
  47. Walling, D.E. 2013. Beryllium-7: The Cinderella of fallout radionuclide sediment tracers? Hydrological Processes. 27(6): 830-844.
  48. Walling, D.E., and T.A. Quine. 1990. Calibration of caesium-137 measurements to provide quantitative erosion rate data. Land Degradation & Development. 2(3): 161-175.
  49. Walling, D.E., and Q. He. 1997. Models for Converting 137Cs Measurements to Estimates of Soil Redistribution Rates on Cultivated and Uncultivated Soils (Including Software for Model Implementation). Report to IAEA. University of Exeter, UK, pp. 315e341.
  50. Walling, D.E., Q. He, and P.G. Appleby. 2002. Conversion models for use in soil-erosion, soil-redistribution and sedimentation investigations. In: Zapata, F. (Ed.), Handbook for the Assessment of Soil Erosion and Sedimentation Using Environmental Radionuclides. Kluwer, Dordrecht. Netherlands. 111-164.
  51. Walling, D.E., Y. Zhang, and Q. He. 2014. Conversion models and related software. In: Guidelines for Using Fallout Radionuclides to Assess Erosion and Effectiveness of Soil Conservation Strategies. International Atomic Energy Agency Publication, pp. 125-148. IAEA-TECDOC 1741.
  52. Wang, Z., Yamada, M., 2005. Plutonium activities and 240Pu/239Pu atom ratios in sediment cores from the East China Sea and Okinawa Trough: sources and inventories. Earth and Planetary Science Letters 233, 441e453.
  53. Warwick, P. E., Croudace, I. W., & Oh, J. S. 2001. Radiochemical determination of 241Am and Pu (α) in environmental materials. Analytical chemistry, 73(14), 3410-3416.
  54. Xu, Y., J. Qiao, S. Pan, X.  Hou, P.  Roos, and L. Cao.  2015. Plutonium as a tracer for soil erosion assessment in northeast China. Science of the Total Environment. 51:176-185.
  55. Xu, Y., J. Qiao, X. Hou, and S. Pan. 2013. Plutonium in soils from northeast China and its potential application for evaluation of soil erosion. Scientific reports. 3, p. 3506.
  56. Yamada, M., Zheng, J., Wang, Z., 2006. 137Cs, 239þ240Pu and 240Pu/239Pu atom ratios in the surface waters of the western North Pacific Ocean, eastern Indian Ocean and their adjacent seas. Science of the Total Environment 366, 242-252.
  57. Zapata, F., and M. L. Nguyen. 2010. Environmental Radionuclides: Tracers and Timers of Terrestrial Processes (Elsevier, Amsterfam, 2010).
  58. Zapata, F. ed., 2002. Handbook for the assessment of soil erosion and sedimentation using environmental radionuclides (Vol. 219). Dordrecht: Kluwer Academic Publishers.
  59. Zhang, X. B., D.E. Walling, and Q. He. 1999. Simplified mass balance models for assessing soil erosion rates on cultivated land using caesium-137 measurements. Hydrological sciences journal. 44(1): 33-45.
  60. Zhang, K.X., S.M. Pan, Y.H. Xu, L.G. Cao, Y.P. Hao, M.M. Wu, W. Xu, and S. Ren. 2016. Using Pu239 + 240 atmospheric deposition and a simplified mass-balance model to re-estimate the soil erosion rate: a case study of Liaodong Bay in China. Journal of Radioanalytical and Nuclear Chemistry. 307(1): 599-604.
  61. Zheng, J., K. Tagami, Y. Watanabe, S. Uchida, T. Aono, N. Ishii, S. Yoshida, Y. Kubota, S. Fuma, and S. Ihara.  2012. Isotopic evidence of plutonium release into the environment from the Fukushima DNPP accident. Scientific reports. 2, p.304.