مروری بر مطالعات مدیریت زراعی در کاهش انتشار گاز گلخانه‌ای نیتروز اکساید از خاک‌های کشاورزی

نوع مقاله : فنی ترویجی

نویسندگان

1 دانشگاه تهران- پردیس کشاورزی و منابع طبیعی کرج- دانشکده مهندسی و فناوری کشاورزی- گروه علوم و مهندسی خاک

2 کارشناس ارشد پژوهشکده کشاورزی هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، تهران، ایران.

3 استاد گروه علوم و مهندسی خاک، دانشگاه تهران، تهران، ایران.

چکیده

انتشار گازهای گلخانه­ای دی اکسید کربن (CO2)، نیتروز اکساید (N2O) و متان (CH4) به آتمسفر و اثرات آن­ها بر تغییر اقلیم یکی از بزرگترین نگرانی­های امروزی است. فعالیت­های کشاورزی به دلیل تأثیر قابل توجه بر پویایی کربن و نیتروژن، دارای اثرات مستقیم و غیرمستقیم بر انتشار گازهای گلخانه­ای از خاک می­باشد. نیتروز اکساید گاز گلخانه­ای قوی بوده و پتانسیل گرمایش جهانی آن 298 برابر بیشتر از دی اکسید کربن است. بیشترین میزان انتشار نیتروز اکساید مربوط به فعالیت­های کشاورزی بوده و به طور عمده از طریق فرآیندهای نیترات­سازی و نیترات­زدایی در خاک­ها اتفاق می­افتد. عوامل مختلف زیست محیطی و مدیریتی تأثیر قابل توجه بر تشکیل و انتشار این گاز گلخانه­ای دارند. این مقاله مروری، قابلیت روش­های مختلف مدیریت زراعی را برای کاهش انتشار نیتروزاکساید از خاک­های کشاورزی ارزیابی می­کند. مدیریت صحیح بقایای گیاهی، بکارگیری روش­های نوین خاک­ورزی حفاظتی و آبیاری و همین­طور گنجاندن محصولات لگوم در تناوب از جمله راهکارهای موثر در کاهش انتشار نیتروز اکساید هستند. همچنین بهبود کارایی مصرف نیتروژن با استفاده از بازدارنده­های نیترات­سازی، اوره­آز و کودهای آهسته­ رهش منجر به کاهش تشکیل و انتشار این گاز می­گردد. تشخیص منشأ انتشار نیتروز اکساید با استفاده از فناوری­های نوین نیز اهمیت قابل ملاحظه­ای در انتخاب و اجرای عملیات زراعی مطلوب و در نتیجه جلوگیری از انتشار بیشتر این گاز گلخانه­ای دارد. بنابراین با توجه به پتانسیل قابل توجه مدیریت صحیح زراعی در کاهش انتشار این گاز، بکارگیری و عملیاتی نمودن هر یک از راهکارهای مدیریتی ارائه شده در این مقاله می­تواند سهم قابل توجهی در کاهش انتشار گاز گلخانه­ای نیتروزاکساید از خاک و در نتیجه جلوگیری از پدیده تغییر اقلیم و گرمایش جهانی و همچنین افزایش تولید پایدار محصولات کشاورزی به دنبال داشته باشد.

کلیدواژه‌ها


عنوان مقاله [English]

A Survey of Agronomic Management Studies Aimed at Mitigating Nitrous Oxide Emissions from Agricultural Soils

نویسندگان [English]

  • Morad Mirzaei 1
  • Rayehe Mirkhani 2
  • Manouchehr Gorji Anari 3
  • Mehdi Shorafa 3
1 Department of Soil Science, Faculty of Agriculture and Natural Resources, University of Tehran
2 2- M.Sc, Nuclear Agriculture School, Nuclear Science and Technology Research Institute, Tehran, Iran.
3 3- Professor, Department of Soil Science and Engineering, Tehran University, Tehran, Iran.
چکیده [English]

A major concern in our modern world is the emission of the greenhouse gases carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4) into the atmosphere and their effects on climate change. Due to their significant impacts on carbon and nitrogen dynamics, agricultural activities have both direct and indirect effects on soil greenhouse emissions. Nitrous oxide is a potent greenhouse gas with a global warming potential of 298 times that of carbon dioxide. Most N2O emissions are agriculturally-induced, occurring due to nitrification and denitrification processes in soils and strongly affected by various environmental and soil management factors. The present review paper attempts to evaluate the capability of different agronomic management practices in mitigating nitrous oxide (N2O) emissions from agricultural soils. Proper management of crop residues, application of new methods of conservation tillage and irrigation techniques, and inclusion of legume crops in crop rotation programs are reportedly among the measures effective in reducing nitrous oxide emissions. Moreover, the use of nitrification and urease inhibitors as well as sustained-release fertilizers to improve nitrogen use efficiency might lead to reduced nitrous oxide formation and emission. From a different perspective, the use of novel technologies to identify the sources of nitrous oxide is of great importance in the selection and application of proper farm operations aimed at preventing further greenhouse emissions. It is expected that the agronomic management strategies proposed herein might have significant contributions to reducing nitrous oxide emission from soils, abating or preventing global climate change and the associated global warming, and achieving sustainable agricultural production.

کلیدواژه‌ها [English]

  • Agriculture
  • Climate change
  • Denitrification
  • Global warming
  • Nitrification
  1. Abalos, D., S, Jeffery., A, Sanz-Cobena., G, Guardia., and A.Vallejo. 2014a. Meta-analysis of the effect of urease and nitrification inhibitors on crop productivity and nitrogen use efficiency. Agriculture, Ecosystems & Environment189: 136-144.
  2. Aguilera, E., L, Lassaletta., A, Sanz-Cobena., J, Garnier., and A. Vallejo. 2013b. The potential of organic fertilizers and water management to reduce N2O emissions in Mediterranean climate cropping systems. A review. Agriculture, Ecosystems & Environment. 164:32-52.
  3. Akiyama, H., X, Yan., and K.Yagi. 2010. Evaluation of effectiveness of enhanced‐efficiency fertilizers as mitigation options for N2O and NO emissions from agricultural soils: meta‐analysis. Global Change Biology. 16(6): 1837-1846.
  4. Baggs, E. M., J, Chebii., and J. K. Ndufa. 2006. A short-term investigation of trace gas emissions following tillage and no-tillage of agroforestry residues in western Kenya. Soil and Tillage Research. 90(1-2): 69-76.
  5. Baggs, E. M., R. M, Rees., K. A, Smith., and A. J. A. Vinten. 2000. Nitrous oxide emission from soils after incorporating crop residues. Soil use and management. 16(2): 82-87.
  6. Bessou, C., B, Mary., J, Leonard., M, Roussel., E, Grehan., and B. Gabrielle. 2010. Modelling soil compaction impacts on nitrous oxide emissions in arable fields. European Journal of Soil Science. 61(3): 348-363.
  7. Boizard, H., G, Richard., J, Roger-Estrade., C, Dürr., and J. Boiffin. 2002. Cumulative effects of cropping systems on the structure of the tilled layer in northern France. Soil and Tillage Research. 64(1-2): 149-164.
  8. Bremner, J. M. 1997. Sources of nitrous oxide in soils. Nutrient cycling in Agroeco systems. 49(1-3): 7-16.
  9. Brentrup, F., J, Kusters., J, Lammel., and H. Kuhlmann. 2000. Methods to estimate on-field nitrogen emissions from crop production as an input to LCA studies in the agricultural sector. The international journal of life cycle assessment. 5(6): 349.
  10. Cameron, K. C., H. J, Di., and J. L. Moir. 2013. Nitrogen losses from the soil/plant system: a review. Annals of Applied Biology. 162(2): 145-173.
  11. Castellano, M. J., J. P, Schmidt., J. P, Kaye., C, Walker., C. B, Graham., H, Lin., and C. J. Dell. 2010. Hydrological and biogeochemical controls on the timing and magnitude of nitrous oxide flux across an agricultural landscape. Global Change Biology. 16(10): 2711-2720.
  12. Cayuela, M. L., M. A, Sánchez-Monedero., A, Roig., K, Hanley., A, Enders., and J. Lehmann. 2013. Biochar and denitrification in soils: when, how much and why does biochar reduce N 2 O emissions?. Scientific reports. 3: 1732.
  13. Chapuis‐Lardy, L. Y. D. I. E., N, Wrage., A, Metay, J. L, CHOTTE., and M. Bernoux. 2007. Soils, a sink for N2O? A review. Global Change Biology. 13(1): 1-17.
  14. Cha-un, N., A, Chidthaisong., K, Yagi., S, Sudo., and S.Towprayoon. 2017. Greenhouse gas emissions, soil carbon sequestration and crop yields in a rain-fed rice field with crop rotation management. Agriculture, ecosystems & environment. 237: 109-120.
  15. Davidson, E. A., and W. T. Swank. 1986. Environmental parameters regulating gaseous nitrogen losses from two forested ecosystems via nitrification and denitrification. Applied and Environmental Microbiology. 52(6): 1287-1292.
  16. de Klein, C. A., R. R, Sherlock., K. C, Cameron., and T. J. van der Weerden. 2001. Nitrous oxide emissions from agricultural soils in New Zealand—a review of current knowledge and directions for future research. Journal of the Royal Society of New Zealand. 31(3): 543-574.
  17. Denman, K. L., A, Chidthaisong., P, Ciais., P. M, Cox., R. E, Dickinson., D, Hauglustaine., .. P. L. D. S. and Dias. 2007. Couplings between changes in the climate system and biogeochemistry. International Panel on Climate Change. 499-587.
  18. Eichner, M. J. 1990. Nitrous oxide emissions from fertilized soils: summary of available data. Journal of environmental quality. 19(2): 272-280.
  19. FAO/IAEA Division of Nuclear Techniques in Food and Agriculture. 2018. Standard Operating Procedure for Gas Flux Measurement.
  20. Felber, R., J, Leifeld., J, Horak., and A. Neftel. 2014. Nitrous oxide emission reduction with greenwaste biochar: comparison of laboratory and field experiments. European Journal of Soil Science. 65(1): 128-138.
  21. Fernandez, F. G., R. E, Terry., and E. G. Coronel. 2015. Nitrous oxide emissions from anhydrous ammonia, urea, and polymer-coated urea in Illinois cornfields. Journal of environmental quality. 44(2): 415-422.
  22. Garcia‐Marco, S., S. R, Ravella., D, Chadwick., A, Vallejo., A. S, Gregory., and L. M. Cardenas. 2014. Ranking factors affecting emissions of GHG from incubated agricultural soils. European journal of soil science. 65(4): 573-583.
  23. Giacomini, S. J., C. P, Jantalia., C, Aita., S. S, Urquiaga, and B. J. R. Alves. 2006. Nitrous oxide emissions following pig slurry application in soil under no-tillage system. Pesquisa Agropecuaria Brasileira. 41(11): 1653-166.
  24. Gilsanz, C., D, Baez., T. H, Misselbrook., M. S, Dhanoa., and L. M. Cardenas. 2016. Development of emission factors and efficiency of two nitrification inhibitors, DCD and DMPP. Agriculture, Ecosystems & Environment. 216: 1-8.
  25. Gomes, J., C, Bayer., F, de Souza Costa., M, de Cassia Piccolo., J. A, Zanatta., F. C. B, Vieira., and J. Six. 2009. Soil nitrous oxide emissions in long-term cover crops-based rotations under subtropical climate. Soil and Tillage Research. 106(1): 36-44.
  26. Granli, T. 1994. Nitrous oxide from agriculture. Norwegian Journal of Agricultural Sciences. 12: 128.
  27. Groffman, P. M. 1987. Nitrification and denitrification in soil: a comparison of enzyme assay, incubation and enumeration methods. Plant and soil. 97(3): 445-450.
  28. Groffman, P. M., E. A, Davidson., and S. Seitzinger. 2009. New approaches to modeling denitrification. Biogeochemistry. 93(1-2): 1-5.
  29. Guardia, G., A, Tellez-Rio., S, Garcia-Marco., D, Martin-Lammerding., J. L, Tenorio., M. A, Ibanez, and A.Vallejo. 2016. Effect of tillage and crop (cereal versus legume) on greenhouse gas emissions and Global Warming Potential in a non-irrigated Mediterranean field. Agriculture, ecosystems & environment. 221:187-197.
  30. Halvorson, A. D., C. S, Snyder, A. D, Blaylock., and S. J.  Del Grosso. 2014. Enhanced-efficiency nitrogen fertilizers: Potential role in nitrous oxide emission mitigation. Agronomy Journal. 106(2): 715-722.
  31. Hellebrand, H. J., V, Scholz., and J. Kern. 2008. Fertiliser induced nitrous oxide emissions during energy crop cultivation on loamy sand soils. Atmospheric Environment. 42(36): 8403-8411.
  32. Houghton, J. (2005). Reports on Progress in Physics. Global warming. 68: 1343-1403.
  33. Huérfano, X., T, Fuertes-Mendizabal., M. K, Dunabeitia., C, González-Murua., J. M, Estavillo., and S. Menéndez. 2015. Splitting the application of 3, 4-dimethylpyrazole phosphate (DMPP): Influence on greenhouse gases emissions and wheat yield and quality under humid Mediterranean conditions. European Journal of Agronomy. 64: 47-57.
  34. International Plant Nutrition Institute (IPNI) (2012). 4R Plant Nutrition : A manual for improving the management of plant nutrition, North American version. In: Bruuslema, et al. (eds.), International Plant Nutrition Institute, Norcross, GA, USA.
  35. Jensen, E. S., M. B, Peoples., R. M, Boddey., P. M, Gresshoff., H, Hauggaard-Nielsen., B. J, Alves., and M. J. Morrison. 2012. Legumes for mitigation of climate change and the provision of feedstock for biofuels and biorefineries. A review. Agronomy for sustainable development. 32(2): 329-364.
  36. Kameyama, K., T, Miyamoto., T, Shiono., and Y. Shinogi. 2012. Influence of sugarcane bagasse-derived biochar application on nitrate leaching in calcaric dark red soil. Journal of Environmental Quality. 41(4): 1131-1137.
  37. Lal, R. 2007. World soils and global issues. Soil & tillage research.
  38. Lehmann, J., J, Gaunt., and M. Rondon. 2006. Bio-char sequestration in terrestrial ecosystems–a review. Mitigation and adaptation strategies for global change. 11(2): 403-427.
  39. Linzmeier, W., R, Gutser., and  U. Schmidhalter. 2001. Nitrous oxide emission from soil and from a nitrogen-15-labelled fertilizer with the new nitrification inhibitor 3, 4-dimethylpyrazole phosphate (DMPP). Biology and Fertility of Soils. 34(2): 103-108.
  40. Liu, C., K, Wang., S, Meng., X, Zheng., Z, Zhou., S, Han.,... and  Z. Yang. 2011. Effects of irrigation, fertilization and crop straw management on nitrous oxide and nitric oxide emissions from a wheat–maize rotation field in northern China. Agriculture, Ecosystems & Environment. 140(1-2): 226-233.
  41. Liu, X. J., A. R, Mosier., A. D, Halvorson., and F. S. Zhang. 2005. Tillage and nitrogen application effects on nitrous and nitric oxide emissions from irrigated corn fields. Plant and Soil. 276(1-2): 235-249.
  42. Mukherjee, A., A. R, Zimmerman., and W. Harris. 2011. Surface chemistry variations among a series of laboratory-produced biochars. Geoderma. 163(3-4): 247-255.
  43. Nawaz, A., R, Lal., R. K, Shrestha., and M. Farooq. 2017. Mulching Affects Soil Properties and Greenhouse Gas Emissions Under Long‐Term No‐Till and Plough‐Till Systems in Alfisol of Central Ohio. Land Degradation & Development. 28(2): 673-681.
  44. Oertel, C., J, Matschullat., K, Zurba., F, Zimmermann., and S. Erasmi. 2016. Greenhouse gas emissions from soils—A review. Chemie der Erde-Geochemistry. 76(3): 327-352.
  45. Petersen, S. O., J. K, Mutegi., E. M, Hansen., and L. J. Munkholm. 2011. Tillage effects on N2O emissions as influenced by a winter cover crop. Soil Biology and Biochemistry. 43(7): 1509-1517.
  46. Prendergast-Miller, M. T., M, Duvall., and S. P. Sohi. 2011. Localisation of nitrate in the rhizosphere of biochar-amended soils. Soil biology and Biochemistry. 43(11): 2243-2246.
  47. Reay, D. S., E. A, Davidson., K. A, Smith., P, Smith., J. M, Melillo., F, Dentener., and P. J. Crutzen. 2012. Global agriculture and nitrous oxide emissions. Nature climate change. 2(6): 410.
  48. Regina, K., and L. Alakukku. 2010. Greenhouse gas fluxes in varying soils types under conventional and no-tillage practices. Soil and Tillage Research. 109(2): 144-152.
  49. Rogovska, N., D, Laird., R, Cruse. P, Fleming., T, Parkin., and D. Meek. 2011. Impact of biochar on manure carbon stabilization and greenhouse gas emissions. Soil Science Society of American Journal. 75(3): 871-879.
  50. Saggar, S., J, Singh., D. L, Giltrap., M, Zaman., J, Luo., M, Rollo.,... and T. J. Van der Weerden. 2013. Quantification of reductions in ammonia emissions from fertiliser urea and animal urine in grazed pastures with urease inhibitors for agriculture inventory: New Zealand as a case study. Science of the Total Environment. 465:136-146.
  51. Sainju, U. M., W. B, Stevens., T, Caesar-TonThat., and J. D. Jabro. 2010. Land use and management practices impact on plant biomass carbon and soil carbon dioxide emission. Soil Science Society of America Journal. 74(5): 1613-1622.
  52. Sanchez-Martín, L., A, Meijide., L, Garcia-Torres., and A. Vallejo. 2010a. Combination of drip irrigation and organic fertilizer for mitigating emissions of nitrogen oxides in semiarid climate. Agriculture, ecosystems & environment. 137(1-2): 99-107.
  53. Sangeetha, M., R, Jayakumar., and C. Bharathi. 2009. Nitrous oxide emission from soils–a review. Agricultural Reviews. 30(2): 94-107.
  54. Sanz-Cobena, A., D, Abalos., A, Meijide., L, Sanchez-Martin., and A.Vallejo. 2016. Soil moisture determines the effectiveness of two urease inhibitors to decrease N2O emission. Mitigation and adaptation strategies for global change. 21(7): 1131-1144.
  55. Sanz-Cobena, A., S, García-Marco., M, Quemada., J. L, Gabriel., P, Almendros., and A. Vallejo. 2014. Do cover crops enhance N2O, CO2 or CH4 emissions from soil in Mediterranean arable systems?. Science of the total environment. 466: 164-174.
  56. Sanz-Cobena, A., L, Lassaletta., E, Aguilera., A, Del Prado., J, Garnier., G, Billen.,... and D. Plaza-Bonilla. 2017. Strategies for greenhouse gas emissions mitigation in Mediterranean agriculture: A review. Agriculture, ecosystems & environment. 238: 5-24.
  57. Shaviv, A. 2001. Advances in controlled-release fertilizers. 1-49.
  58. Signor, D., C. E. P, Cerri., and R. Conant. 2013. N2O emissions due to nitrogen fertilizer applications in two regions of sugarcane cultivation in Brazil. Environmental Research Letters. 8(1): 015013.
  59. Smith, K. A., T, Ball., F, Conen., K. E, Dobbie., J, Massheder., and A. Rey. 2018. Exchange of greenhouse gases between soil and atmosphere: interactions of soil physical factors and biological processes. European journal of soil science. 69(1): 10-20.
  60. Snyder, C.S., and N.A. Slaton. 2001. Rice production in the United States: An overview. Better Crops. 85(3): 3-7.
  61. Stevens, R. J., and R.J. Laughlin. 1998. Measurement of nitrous oxide and di-nitrogen emissions from agricultural soils. Nutrient Cycling in Agroecosystems. 52(2-3):131-139.
  62. Sutka, R. L., N. E, Ostrom., P. H, Ostrom., J. A, Breznak., H, Gandhi., A. J, Pitt., and  F. Li. 2006. Distinguishing nitrous oxide production from nitrification and denitrification on the basis of isotopomer abundances. Applied Environmental Microbiology. 72(1): 638-644.
  63. Tan, I. Y., H. M, van Es, Duxbury., J. M, Melkonian., J. J, Schindelbeck., R. R, Geohring., L. D., ... and B. N.  Moebius. 2009. Single-event nitrous oxide losses under maize production as affected by soil type, tillage, rotation, and fertilization. Soil and Tillage Research. 102(1): 19-26.
  64. Tellez-Rio, A., S, García-Marco., M, Navas., E, Lopez-Solanilla., R. M, Rees., J. L, Tenorio., and A. Vallejo. 2015. Nitrous oxide and methane emissions from a vetch cropping season are changed by long-term tillage practices in a Mediterranean agroecosystem. Biology and fertility of soils. 51(1): 77-88.
  65. Thomson, A. J., G, Giannopoulos., J, Pretty., E. M, Baggs., and D. J. Richardson. 2012. Biological sources and sinks of nitrous oxide and strategies to mitigate emissions. 1157-1168.
  66. Timilsena, Y. P., R, Adhikari., P, Casey., T, Muster., H, Gill., and B. Adhikari. 2015. Enhanced efficiency fertilisers: a review of formulation and nutrient release patterns. Journal of the Science of Food and Agriculture. 95(6): 1131-1142.
  67. Tubiello, F. N., M, Salvatore., R. D, Condor Golec., A, Ferrara., S, Rossi., R, Biancalani,... and A. Flammini. 2014. Agriculture, forestry and other land use emissions by sources and removals by sinks. Statistics Division, Food and Agriculture Organization. Rome.
  68. Van Zwieten, L., S, Kimber., S, Morris., A, Downie., E, Berger., J, Rust., and C. Scheer. 2010. Influence of biochars on flux of N2O and CO2 from Ferrosol. Soil Research. 48(7): 555-568.
  69. VanderZaag, A. C., S, Jayasundara., and C. Wagner-Riddle. 2011. Strategies to mitigate nitrous oxide emissions from land applied manure. Animal Feed Science and Technology. 166: 464-479.
  70. Wang, Y. Y., C. S, Hu., H, Ming., Y. M, Zhang., X. X, Li , W. X, Dong., and O.Oenema. 2013b. Concentration profiles of CH4, CO2 and N2O in soils of a wheat–maize rotation ecosystem in North China Plain, measured weekly over a whole year. Agriculture, ecosystems & environment. 164: 260-272.
  71. Yamulki, S., and S. Jarvis. 2002. Short-term effects of tillage and compaction on nitrous oxide, nitric oxide, nitrogen dioxide, methane and carbon dioxide fluxes from grassland. Biology and Fertility of Soils. 36(3): 224-231.
  72. Zaman, M., M. L, Nguyen., and S. Saggar. 2008b. N2O and N2 emissions from pasture and wetland soils with and without amendments of nitrate, lime and zeolite under laboratory condition. Soil Research. 46(7): 526-534.
  73. Zaman, M., M. L, Nguyen., A. J, Gold., P. M, Groffman., D. Q, Kellogg, and R. J. Wilcock. 2008a. Nitrous oxide generation, denitrification, and nitrate removal in a seepage wetland intercepting surface and subsurface flows from a grazed dairy catchment. Soil Research. 46(7): 565-577.
  74. Zaman, M., M. L, Nguyen., M, Simek., S, Nawaz., M. J, Khan., M. N, Babar., and S. Zaman. 2012. Emissions of nitrous oxide (N2O) and di-nitrogen (N2) from the agricultural landscapes, sources, sinks, and factors affecting N2O and N2 ratios. In Greenhouse gases-emission, measurement and management. InTech.1-32.
  75. Zanatta, J. A., C, Bayer., F. C, Vieira., J, Gomes., and M. Tomazi. 2010. Nitrous oxide and methane fluxes in South Brazilian Gleysol as affected by nitrogen fertilizers. Revista Brasileira de Ciencia do Solo. 34(5): 1653-1665.
  76. Zhang, J., and X. Han. 2008. N2O emission from the semi-arid ecosystem under mineral fertilizer (urea and superphosphate) and increased precipitation in northern China. Atmospheric Environment. 42(2): 291-302.
  77. Zhou, W., T. F, Lv., Y, Chen., A. P, Westby., and W. J. Ren. 2014. Soil physicochemical and biological properties of paddy-upland rotation: a review. The Scientific World Journal, 2014.