نوع مقاله : فنی ترویجی

نویسندگان

1 استادیار بخش شیمی و حاصلخیزی خاک و تغذیه گیاه، موسسه تحقیقات خاک و آب کرج ایران

2 استادیار پژوهش موسسه تحقیقات خاک و آب، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران.

3 استادیار پژوهش موسسه تحقیقات خاک و آب

چکیده

بهبود کیفیت، پایداری سیستم کشت و کاهش هزینه­های تولید از اهداف کشاورزی نوین است. از طرف دیگر تغییرات اقلیمی در جهان و ایران سبب شده گیاهان زراعی با تنش­های مختلفی مواجه گردند. به­نظر می­رسد مواد محرک رشد گیاهی بتوانند گیاهان را در مواجه با این تنش­ها یاری نمایند. این ترکیبات شامل مواد هیومیکی، عصاره جلبک­های دریایی، اسیدهای آمینه، مایه تلقیح میکروبی، مواد معدنی مانند عناصر مفید، نمک­های غیر آلی مانند فسفیت، مواد ضد تعرق، و غیره هستند. تأثیر این مواد در گونه­های مختلف و حتی ارقام یک گونه گیاهی ممکن است متفاوت باشد. لذا نحوه کاربرد مواد محرک رشد در کشاورزی و باغبانی باید با توجه به نتایج بررسی­های محلی و منطقه­ای اصلاح گردد. استفاده از مواد محرک رشد گیاهی در چند سال اخیر در جهان و ایران، افزایش چشمگیری داشته است. هدف این مقاله، فراهم کردن درک بهتر از این مواد بر اساس یافته­های علمی و عملی در کشاورزی و باغبانی است. موارد بیان شده در این مقاله نشان می­دهد که مواد محرک رشد گیاهی باعث بهبود و افزایش پایداری تولید محصول شده و همزمان باعث افزایش مقاومت گیاه در برابر تنش­های غیرزنده و افزایش کیفیت محصول شده­اند. تحقیقات در زمینه این مواد در آینده باید با تاکید بر تعیین مکانیسم عمل باشد. درک بهتر مکانیسم تأثیر این مواد در بهینه کردن استفاده از این ترکیبات در مدیریت پایدار کشاورزی مفید خواهد بود.

کلیدواژه‌ها

عنوان مقاله [English]

Biostimulants and their Roles in Plant Physiology, Nutrient Absorption, and Tolerance to Abiotic Stresses

نویسندگان [English]

  • Seyed Ali Ghaffari Nejad 1
  • freydon nourgholipour 2
  • Mohammad Nabi Gheybi 3

1 Assistant prof. of soil chemistry, fertility and plant nutrition

2 scientific staff

چکیده [English]

 
Improved product quality, sustainable cultivation systems, and reduced production costs are among the objectives of modern agriculture despite the global and local climate changes that have faced crops with a variety of stresses. Biostimulants seem to be capable of helping plants in their struggle against these stresses toward the goals of modern agriculture. These compounds include humic substances, seaweed extracts, amino acids, microbial inoculants, and minerals such as useful elements and inorganic salts including phosphates and antiperspirants. While application of biostimulants has witnessed a dramatic increase in the world and in Iran over the past few years, it must be noticed that they might have different effects on different species and even on different varieties of a given plant species. Their application for agricultural and horticultural purposes must, therefore, be duly modified in accordance with local and regional research findings. It is the objective of this paper to provide a better understanding of plant biostimulants based on scientific findings and practical experience in agriculture and horticulture. It will be shown that plant biostimulants are capable of improving crop production, enhancing plant resistance to abiotic stresses, and elevating crop quality. Future research in this area should aim at the determination of the mechanism(s) underlying the activities of such materials since a better understanding of their activities and effects will be necessary for achieving sustainable agricultural production systems.

  1. بهزاد .م.،  م. پارسا ، ح. ر. احیایی و ر. ی. بیوکی. 1390. بررسی شاخص­های جوانه زنی و رشد گیاهچه­های ارقام مختلف بذور گندم تیمار شده با هیومیک، فولویک و سالسیلیک اسید. دومین همایش ملی علوم و تکنولوژی بذر، مشهد، ایران.
  2. پوریوسف میاندوآب، م. و م. شاهی. 1395. اثر محلول­پاشی محرکهای رشد و زمان کاربرد آنها بر عملکرد و برخی ویژگیهای زراعی گلرنگ (Carthamus tinctorius L. ). فصلنامه علمی پژوهشی فیزیولوژی گیاهان زراعی، سال هشتم، شماره سی و دوم، 25-43.
  3. حسینی، س. ع. 1395. محلول‌پاشی عصاره جلبک دریایی و مصرف اسید هیومیک بر رشد و عملکرد دو رقم لوبیا ( (Phasaeolous vulgaris. پایان نامه کارشناسی ارشد، دانشگاه  بوعلی سینا، همدان، ایران.
  4. خسروی، ه. 1392. کودهای زیستی محرک رشد گیاه در ایران: نقاط قوت و ضعف. مدیریت اراضی.46-33 : (1)1
  5. خواجه، ع. 1391. اثر متقابل تنش خشکی و کاربرد اسید هیومیک بر رشد و عملکرد سیب زمینی. پایان نامه کارشناسی ارشد، دانشگاه شاهرود، شاهرود، ایران.
  6. شهریاری فخرآباد، م .1395. بررسی اثر محلول پاشی زیست محرک رشد عصاره جلبک دریایی (Ascophyllumnodosum)روی برخی خصوصیات کمی و کیفی سه رقم گوجه فرنگی( Solanum lycopersicon Mill) . پایان‌نامه کارشناسی ارشد، دانشگاه فردوسی مشهد، مشهد، ایران.
  7. طالع فراهی، ف. 1393. بررسی اسید هیومیک استخراج شده از لجن، بیوچار و کود حیوانی بر عملکرد گیاه آفتابگردان کشت شده در خاک آهکی. پایان‌نامه کارشناسی ارشد، دانشگاه زابل، زابل، ایران.
  8. غفاری زاده، آ. 1394. تأثیر عصاره جلبک قهوه­ایNizamuddinia zanardiniiبر شاخص­های رشد، بیوشیمیایی و فعالیت آنتی­اکسیدانی گیاه گندم رقم چمران 2. پایان‌نامه کارشناسی ارشد، دانشگاه شهید چمران اهواز ، دانشکده علوم پایه، اهواز، ایران.
  9. غیبی، م. ن. 1397. اصول کاربردی تغذیه گیاه. نشر توانگران. تهران، ایران. 62 ص.
  10. کشاورز، ح. 1389. پاسخ فیزیولوژیک و آناتومیک دو رقم کلزا (حساس و مقاوم به سرما) به محلول­پاشی اسید سالیسیلیک. پایان‌نامه کارشناسی ارشد، دانشگاه تربیت مدرس، فیزیولوِژی گیاهی، تهران، ایران.
  11. محمدزاده، س. و م. تاج بخش. 1394. اثر پرایمینگ و محلولپاشی بر خصوصیات رشد و عملکرد کمی و کیفی ذرت (Zea mays L.)، پژوهش در گیاهان زراعی، جلد 3 شماره2، 87-76.
  12. مرادی، ف. 1395. تنظیم کننده­های گیاهی در گذشته، حال و آینده. نشریه علمی ترویجی یافته­های تحقیقاتی در گیاهان زراعی و باغی، جلد 5، شماره 2، صفحه 95-71.
  13. نجفی ، م. 1395. بررسی اثر اسید هیومیک واسید فولویک و اسیدآمینه به صورت کود­آبیاری برروی صفات کمی وکیفی خیار سوپر دامینوس تحت تنش خشکی. پایان‌نامه کارشناسی ارشد، دانشگاه فردوسی مشهد، دانشکده کشاورزی و منابع طبیعی، مشهد، ایران.
  14. هناو، ز. 1395. تأثیر کلات کلسیم و اسید هیومیک بر برخی ویژگی­های کمی و کیفی شب بو .(Matthiolaincana) پایان نامه کارشناسی ارشد، دانشگاه ارومیه، علوم باغبانی، ارومیه، ایران.
  15. Alam, M. Z., G. Braun, J. Norrie, D. M. Hodges .2013. Effect of Ascophyllum extract application on plant growth, fruit yield and soil microbial communities of strawberry. Canadian. Journal of Plant Science. 93:23–36
  16. Aminifard, M. H., H. Aroiee, H. Nemati, M. Azizi, and H. Z. E.  Jaafar. 2012. Fulvic acid affects pepper antioxidant activity and fruit quality. African Journal of Biotechnology. 68: 13179-13185.
  17. Arancon, N.Q., S. Lee, C.A. Edwards, and R. Atiyeh. 2003. Effects of humic acids derived from cattle, food and paper-waste vermi-composts on growth of greenhouse plants: the 7th international symposium on earthworm ecology·. Pedobiologia 47: 741-744.
  18. Asli, S., and P.M. Neumann. 2010. Rhizosphere humic acid interacts with root cell walls to reduce hydraulic conductivity and plant development. Plant and Soil 336:313–322.
  19. Bacilio, M., h. Rodriguez, M. Moreno, J. P. Hernandez, and Y. Bashan. 2004. Mitigation of salt stress in wheat seedlings by a gfp-tagged Azospirillum lipoferum. Biology and Fertility of Soils 40:188–193
  20. Berbara, R.L.L., and A.C. García. 2014. Humic substances and plant defense metabolism. pp 297–319. In: P. Ahmad, and M.R. Wani (eds) Physiological mechanisms and adaptation strategies in plants under changing environment: volume 1. Springer Science + Business Media, New York.
  21. Bocanegra, M.P., J.C. Lobartini, and G.A. Orioli. 2006. Plant uptake of iron chelated by humic acids of different molecular weights. Communications in Soil Science and Plant Analysis 37: 239-248.
  22. Brown, P. and S. Saa. 2015. Biostimulants in agriculture. Frontiers in plant science 6:1-3.
  23. Bulgari, R., G. Cocetta, A. Trivellini, P. Vernieri, and A. Ferrante. 2015. Biostimulants and crop responses: a review. Biological Agriculture & Horticulture, 31: 1-17.
  24. Calvo, P., L. Nelson, and J. W. Kloepper. 2014.  Agricultural uses of plant biostimulants. Plant and soil, 383(1-2):  3-41.
  25. Canellas, L.P., R. Spaccini, A. Piccolo, L.B. Dobbss, A.L. Okorokova-Façanha, G. Araújo Santos, F.L. Olivares, and A.R. Façanha. 2009. Relationships between chemical characteristics and root growth promotion of humic acids isolated from Brazilian oxisols. Soil Science, 174:611-620.
  26. Carletti, P., A. Masi, B. Spolaore, P.P. De Laureto, M. De Zorzi, L. Turetta, M. Ferretti, and S. Nardi. 2008. Protein expression changes in maize roots in response to humic substances. Journal of chemical ecology 34:804–818.
  27. Chen, Y., C.E. Clapp, and H. Magen. 2004. Mechanisms of plant growth stimulation by humic substances: the role of organo-iron complexes. Soil Science and Plant Nutrition 50:1089–1095.
  28. Colla, G., Y. Rouphael, R. Canaguier, E. Svecova, M. Cardarelli. 2014. Biostimulant action of a plant-derived protein hydrolysate produced through enzymatic hydrolysis.  Frontiers in Plant Science 5: 1–6.
  29. Craigie, J.S. 2011. Seaweed extract stimuli in plant science and agriculture. Journal of Appllied Phycology. 23, 371–393.
  30. Craigie, J.S., S. L. MacKinnon, J. A. Walter. 2008. Liquid seaweed extracts identified using 1H NMR profiles. Journal of Appllied Phycology. 20: 665–671.
  31. Drobek, M., M. Frąc and J. Cybulska. 2019. Plant biostimulants: importance of the quality and yield of horticultural crops and the improvement of plant tolerance to abiotic stress—a review. Agronomy 9(6): 335- 352.
  32. Du Jardin, P., 2012. The Science of Plant Biostimulants—A bibliographic analysis. Ad hoc Study Report to the European Commission DG ENTR. 2012; http://ec.europa.eu/enterprise/sectors/chemicals/files/fertilizers/final report bio 2012en.pdf.
  33. Du Jardin, P., 2015. Plant biostimulants: definition, concept, main categories and regulation. Scientia Horticulturae 196:3-14.
  34. Dunstone, R.L., R.A. Richards, H.M. Rawson. 1988. Variable responses of stomatal conductance, growth, and yield to fulvic acid applications to wheat. Australian Journal of Agricultural Research 39:547–553.
  35. Ertani, A., L. Cavani, D. Pizzeghello, E. Brandellero, A. Altissimo, C. Ciavatta, and S. Nardi. 2009. Biostimulant activity of two protein hydrolyzates in the growth and nitrogen metabolism of maize seedlings. Journal of plant nutrition and soil science 172:237-244.
  36. Ertani, A., D. Pizzeghelio, A. Altissimo, and S. Nardi .2013a.Use of meathydrolyzate derived from tanning residues as plant biostimulant for hydroponically grown maize. Journal of Plant Nutrition and Soil Science 176:287–296.
  37. Ertani, A., M. Schiavon, A. Muscolo, and S. Nardi. 2013b. Alfalfa plant derived biostimulant stimulate short-term growth of salt stressed Zea mays L. plants. Plant and Soil 364:145–158.
  38. Esteves da Silva, J.C.G., A.A.S.C. Machado, and C.J.S. Oliveira. 1998. Effect of pH on complexation of Fe (III) with fulvic acids. Environmental Toxicology and Chemistry 17:1268–1273.
  39. Fagbenro, J.A. and A.A. Agboola. 1993. Effect of different levels of humic acid on the growth and nutrient uptake of teak seedlings. Journal of Plant Nutrition 16:1465-1483.
  40. Fan, D., D. M. Hodges, A. T. Critchley, B. Prithiviraj. 2013. A commercialextract of Brown Macroagla (Ascophyllum nodosum) affects yield and the nutritional quality of spinach in vitro. Communication in Soil Science Plant Analaysis. 44:1873–1884
  41. Ferri, M., M. Franceschetti, M.J. Naldrett, G. Saalbach, A. Tassoni. 2014. Effects of chitosan on the protein profile of grape cell culture sub cellular fractions. Electrophoresis 35:1685–1692.
  42. Food and Agricultural Organization. 2006. Yearbook of fishery statistics. Rome: Food andAgricultural Organization of United Nations.
  43. Food and Agricultural Organization. 2018. Plant growth regulators(item).FAOstatistics.http://www.fao.org/faostat/en/?#search/Plant-Growth%20Regulator.
  44. Forde, B.G., and P.J. Lea. 2007. Glutamate in plants: metabolism, regulation, and signaling. Journal of Experimental Botany 58:2339–2358.
  45. Gajc-Wolska, J., K. Kowalczyk, M. Nowecka, K. Mazur, A. Metera .2012. Effect of organic mineral fertilizers on the yield and quality of Endive (Cichorium endivia L.). Acta Scientiarum Polonorum 11:189–200.
  46. García, A.C., R.L.L. Berbara, L.P. Farías, F.G. Izquierdo, O.L. Hernández, R.H. Campos, and R.N. Castro. 2012. Humic acids of vermicompost as an ecological pathway to increase resistance of rice seedlings to water stress. African Journal of Biotechnology 11:3125-3134.
  47. Garnett, T., M. C. Appleby, A. Balmford, I. J. Bateman, T. G. Benton, P. Bloomer, B. Burlingame, M. Dawkins, L. Dolan, D. Fraser, M. Herrero, I. Hoffmann, P. Smith, P. K. Thornton, C. Toulmin, S. J. Vermeulen, H. C. J. Godfray. 2013. Sustainable intensification in agriculture: premises and policies. Science. 341, 33–34.
  48. González A., J. Castro, J. Vera, A. Moenne. 2013.  Seaweed oligosaccharides stimulate plant growth by enhancing carbon and nitrogen assimilation, basal metabolism, and cell division. Journal of Plant Growth Regulations. 32:443–448
  49. Grabowska, A., E. Kunicki, A. Sekara, A. Kalisz, and R. Wojciechowska. 2012. The effect of cultivar and biostimulant treatment onthe carrot yield and its quality. Vegetable Crops Research Bulletin 77:37–48.
  50. Guinan, K.J., N. Sujeeth, R. B. Copeland, P.W. Jones, N.M. O’Brien, H.S. S. Sharma, P. F. G. Prouteau, and J. T.  O’Sullivan. 2013. Discrete roles for extracts of Ascophyllum nodosum in enhancing plantgrowth and tolerance to abiotic and biotic stresses. Acta Hortic. 1009:127–136.
  51. Gyaneshwar, P., G. Naresh Kumar, L. J. Parekh, and P. S. Poole. 2002. Role of soil microorganisms in improving P nutrition of plants. Plant and Soil 245:83–93.
  52. Halpern, M., A. Bar-Tal, M. Ofek, D. Minz, T. Muller, U. Yermiyahu. 2015. The useof biostimulants for enhancing nutrient uptake. pp. 141–174, Vol. 129.  In: D.L. Sparks, (Ed.), Advances in Agronomy.
  53. Heckman, J. R. 1994. Effect of an organic bio-stimulant on cabbage yield. J Home Consum Hortic.1:11–113.
  54. Hayat, R., S. Ali, U. Amara, R Khalid, and I. Ahmed .2010. Soil beneficial bacteria and their role in plant growth promotion: a review. Annals of Microbiology. 60:579–598
  55. Jannin, L., M. Arkoun, P. Etienne. 2013. Brassica napus growth is promoted by Ascophyllum nodosum (L.) Le Jol. Seaweed extract: microarray analysis and physiological characterization of N, C, and S metabolisms. Journal of Plant Growth Regulations. 32:31–52.
  56. Jindo, K., S.A. Martim, E.C. Navarro, N.O. Aguiar, and L.P.  Canellas. 2012. Root growth promotion by humic acids from composted and non-composted urban organic wastes. Plant and Soil 353:209–220.
  57. Karlidag H, M. Turan, M. Pehluvan, and F. Donmez .2013. Plant growth-promoting rhizobacteria mitigate deleterious effects of salt stress on strawberry plants (Fragaria×ananassa). Horticultural Science 48:563–567
  58. Katiyar, D., A.Hemantaranjan, and B. Singh. 2015. Chitosan as a promising natural compound to enhance potential physiological responses in plant: a review. Indian Journal of Plant Physiology 20: 1–9.
  59. Khan, W., U. P.  Rayirath, S. Subramanian, M. N. Jithesh, P. Rayorath, D. M. Hodges, A. T. Critchley, J. S. Craigie, J. Norrie, B. Prithiviraj. 2009. Seaweed extracts asbiostimulants of plant growth and development. Journal of Plant Growth Regulations. 28,386–399.
  60. Khan W., D.  Hiltz, A. T. Critchley, B. Prithiviraj. 2011. Bioassay to detect Ascophyllum nodosum extract-induced cytokinin-like activity in Arabidopsis thaliana. Journal of Appllied Phycology. 23:409–414
  61. Kunicki, E., A. Grabowska, A. Sękara, and R. Wojciechowska .2010. The effect of cultivar type, time of cultivation, and bio stimulant treatment on the yield of spinach (Spinacia oleracea L). Folia Horticulturae 22:9–13.
  62. Lea, P.J., L. Sodek, M.A.J. Parry, P.R. Shewry, and N.G. Halford .2006. Asparagine in plants. Annals of Applied Biology 150:1–26.
  63. Liang, X.W., L. Zhang, S.K. Natarajan, D.F. Beckker .2013. Proline mechanisms of stress survival. Antioxid Redox Signaling 19:998–1011.
  64. Marschner, H. 2011. Marschner's mineral nutrition of higher plants. Academic press.
  65. Miller, A.J., X. Fan, Q. Shen, and S.J. Smith .2007. Amino acids and nitrate as signals for the regulation of nitrogen acquisition. Journal of Experimental Botany 59:11–119.
  66. Mohamed, W.H. 2012. Effects of humic acid and calcium forms on dry weight and nutrient uptake of maize plant under saline condition. Australian Journal of Basic and Applied Sciences 6:597–604.
  67. Morales-Payan, J.P., and W.M. Stall .2003. Papaya (Carica papaya) response to foliar treatments with organic complexes of peptides and amino acids. Proceedings of the Florida State Horticultural Society 116:30–32.
  68. Nardi, S., p. Carletti, D. Pizzeghello, A. Muscolo. 2009. Biological activities of humic substances. In: Senesi N, Xing B, Huang PM, editors. Biophysico-chemical processes involving natural nonliving organic matter in environmental systems. Vol 2. Hoboken, NJ: Wiley; p. 305–340.
  69. Nardi, S., D. Pizzeghello, M. Schiavon, and A. Ertani. 2016. Plant biostimulants: physiological responses induced by protein hydrolyzed-based products and humic substances in plant metabolism. Scientia Agricola 73: 8-23.
  70. Nikbakht, A., M. Kafi, M. Babalar, Y.P. Xia, A. Luo, and N.A. Etemadi. 2008. Effect of humic acid on plant growth, nutrient uptake, and postharvest life of gerbera. Journal of Plant Nutrition 31:2155-2167.
  71. Pandeya, S.B., A.K. Singh, and P. Dhar .1998. Influence of fulvic acid on transport of iron in soils and uptake by paddy seedlings. Plant and Soil 198:117–125.
  72. Parrado, J., J. Bautista, E.F. Romero, A.M. García-Martínez, V. Friaza, and M. Tejada. 2008. Production of a carob enzymatic extract: potential use as a biofertilizer. Bioresource Technology 99: 2312-2318.
  73. Peng, A., Y. Xu, and Z.J. Wang .2001. The effect of fulvic acid on the dose effect of selenite on the growth of wheat. Biological Trace Element Research 83:275–279.
  74. Piccolo, A., and M. Spiteller .2003. Electro spray ionization mass spectrometry of terrestrial humic substances and their size fractions. Analytical and Bioanalytical Chemistry 377:1047–1059.
  75. Porcel, R., R. Aroca, and J. M. Ruiz-Lozano. 2012. Salinity stress alleviation using arbuscular mycorrhizal fungi. Agronomy for Sustainable Development. 32:181–200
  76. Rafiee, H., H. Naghdi Badi, A. Mehrafarin, A. Qaderi, N. Zarinpanjeh, A. Sekara, and E. Zand. 2016. Application of plant biostimulants as new approach to improve the biological responses of medicinal plants-A critical review.Journal of Medicinal Plants. 59 (3): 6-39.
  77. Rose, M.T., A.F. Patti, K.R. Little, A.L. Brown, W.R. Jackson, and T.R. Cavagnaro. 2014. A meta-analysis and review of plant-growth response to humic substances: practical implications for agriculture. Vol. 124, pp. 37–89. In: D.S. Sparks, (Ed.), Advances in Agronomy.
  78. Rodriguez, H., and R. Fraga. 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology Advances. 17:319–339.
  79. Ryu, C. M, M. A. Farag, C. H. Hu et al .2003. Bacterial volatiles promote growth in Arabidopsis.  Proceedings of the National Academy of Sciences. 100:4927–4932.
  80. Saleem, M., M. Arshad, S. Hussain, and A. Bhatti. 2007. Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. Journal of industrial microbiology and biotechnology.  34:635–648.
  81. Schiavon M, A. Ertani, S. Nardi. 2008. Effects of an alfalfa protein hydrolysate on the gene expression and activity of enzymes of the tricarboxylic acid (TCA) cycle and nitrogen metabolism in Zea mays L. Journal of Agricultural and Food Chemistry 56:11800–11808.
  82. Sharma, S.S., K. J. Dietz .2006. The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. Journal of Experimental Botany 57:711–726
  83. Sharma, S. H. S., G. Lyons, C. Mc Roberts, D. Mc Call, E. Carmichael, F. Andrews, R. Swan, R. McCormack, and R. Mellon. 2012. Biostimulant activity of brown seaweed species from Strangford Lough: compositional analyses of polysaccharides and bioassay of extracts using mung bean (Vigno mungo L.) and pak choi (Brassica Rapa chinensis L.). Journal of Applied Phycology. 24:1081–1091.
  84. Sharma, A., D. Shankhdar, S. C. Shankhdhar .2013. Enhancing grain iron content of rice by the application of plant growth promoting rhizobacteria. Plant and Soil Environment. 59:89–94
  85. Suzuki, N., S. Koussevitzky, R. Mittler, and G. Miller .2012. ROS and redox signaling in the response of plants to abiotic stress. PlantCell & Environment 35:259–270.
  86. Sytar, O., A. Kumar, D. Latowski, P. Kuczynska, K. Strzałka, and M.N.V. Prasad. 2013. Heavy metal-induced oxidative damage, defense reactions, and detoxification mechanisms in plants. Acta Physiologiae Plantarum 35:985-999.
  87. Trevisan, S., O. Francioso, S. Quaggiotti, and S. Nardi. 2010. Humic substances biological activity at the plant-soil interface. Plant Signaling Behavior 5:635–643.
  88. Vessey, J. K. 2003. Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil. 255:571–586.
  89. Vivas, A., A. Marulanda, J. Ruiz-Lozano, J. Barea, and R. Azcón. 2003. Influence of a Bacillus sp. on physiological activities of two arbuscular mycorrhizal fungi and on plant responses to PEG induced drought stress. Mycorrhiza 13:249–256.
  90. Vranova, V., K. Rejsek, K.R. Skene, and P. Formanck .2011. Non-protein amino acids: plant, soil and eco system interactions. Plant and Soil 342:31–48.
  91. Wally, O. S. D., A. T. Critchley, D.  Hiltz, J. S. Craigie, X. Han, L. I. Zaharia, S. R. Abrams, B. Prithiviraj. 2013. Regulation of phytohormone biosynthesis and accumulation in Arabidopsis Following treatment with commercial extract from the marine macro alga ascophyllum nodosum. Journal of Plant Growth Regulation. 32,324–339.
  92. Wu, C.C., P. Singh, M.C. Chen, L. Zimmerli .2010. L-Glutamine inhibits beta-amino butyric acid-induced stress resistance and priming in Arabidopsis. Journal of experimental botany 61:995–1002.
  93. Xudan, X. 1986. The effect of foliar application of fulvic acid on water use, nutrient uptake and yield in wheat. Australian Journal of Agricultural Research 37:343–350.
  94. Zodape, S.T., A. Gupta, S. C. Bhandari. 2011.  Foliar application of seaweed sap as biostimulant for enhancement of yield and quality of tomato (Lycopersicon esculentum Mill.). J. Sci.  Ind.  Res. 70:215–219.