نوع مقاله : فنی ترویجی

نویسنده

استادیار گروه علوم و مهندسی خاک دانشکده کشاورزی دانشگاه شهید چمران اهواز، اهواز، ایران.

چکیده

فراهمی عناصر غذایی کم­مصرف در خاک و جذب آن­ها توسط گیاهان به ویژگی­های خاک (مانند مواد آلی، کربنات کلسیم و pH) و برهمکنش­های بین ریشه­های گیاه و ریزجانداران خاک بستگی دارد. زیست­فراهمی عناصر کم­مصرف آهن (Fe)، منگنز (Mn)، مس (Cu) و روی (Zn) در خاک­های آهکی مناطق خشک و نیمه خشک به­دلیل کمبود مواد آلی، pH بالا و رسوب توسط کربنات­ها، اندک می­باشد. یکی از محدودیت­های عمده تغذیه گیاهان در خاک­های آهکی، زیست­فراهمی اندک عناصر غذایی کم­مصرف می­باشد. نتایج مطالعات نشان داده که در شرایط کمبود عناصر غذایی، اسیدهای آلی با وزن مولکولی کم مانند اسید سیتریک، اسید اگزالیک و اسید مالیک توسط ریشه گیاهان آزاد شده و سبب افزایش حلالیت عناصر کم­مصرف می­شوند. اسیدهای آلی ترشح شده در ریزوسفر گیاهان، در افزایش تحرک و زیست­فراهمی عناصر غذایی کم­مصرف در خاک و به­دنبال آن افزایش جذب آن­ها توسط گیاهان موثر شناخته شده­اند. افزون بر این، اسیدهای آلی با وزن مولکولی کم در سمیت زدایی فلزات سنگین و بهبود فعالیت میکروبی خاک موثر هستند. بنابراین مطالعه حاضر به بررسی تاثیر اسیدهای آلی با وزن مولکولی کم در افزایش زیست­فراهمی عناصر کم­مصرف شامل آهن، منگنز، مس و روی می­پردازد.

کلیدواژه‌ها

عنوان مقاله [English]

The Role of Low Molecular Weight Organic Acids in Micronutrient Bioavailability in Soil

نویسنده [English]

  • Neda Moradi

Department of Soil Science, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran

چکیده [English]

Bioavailability of micronutrients in soils and their uptake by plants depend on soil properties (e.g., pH and carbonate content) and the interactions between plant roots and soil microorganisms. The low bioavailability of iron (Fe), manganese (Mn), copper (Cu), and zinc (Zn), as a major factor limiting plant nutrition, in calcareous soils is due to the low organic content, high pH levels, and precipitation by carbonates in such soils. Study has shown that, under nutrient deficiency conditions, plant roots release low-molecular-weight organic acids (LMWOA) such as citric, oxalic, and malic acids to increase the solubility of micronutrients like Fe, Mn, Cu, and Zn in the rhizosphere. The LMWOAs exuded into the rhizosphere are known to enhance the mobility and bioavailability of such micronutrients and their uptake by plants. In addition, LMWOAs are involved in metal detoxification and improvement of microbial activity in soils. The present study investigates the role LMWOAs play in the bioavailability of such micronutrients as Fe, Mn, Cu, and Zn.
 

کلیدواژه‌ها [English]

  • Root exudates
  • Solubility
  • Calcareous soil
  • Micronutrients
  • Rhizosphere
  1. اعتمادیان، م.، حسنی، ا.، نورزداه حداد، م.، حنیفه­ئی، م. 1396. تأثیر کاربرد اسیدهای آلی و معدنی بر آزادسازی عناصر غذایی در خاکهای آهکی.نشریه پژوهش­های حفاظت آب و خاک. 24(5): 73-91.
  2. حسنی، ا.، اعتمادیان، م.، نورزداه حداد، م.، حنیفه­ئی، م. 1397. تأثیر کاربرد برخی اسیدهای آلی بر ویژگی­های رشدی و غلظت عناصر غذایی ذرت علوفه­ای. آب و خاک. 32(5): 547-558.
  3. رسولی صدقیانی، م.ح.، دره­قایدی، ب.، خداوردیلو، ح.، مرادی، ن. 1394. تاثیر اسیدهای آلی بر جذب و تثبیت آهن در خاک­های آهکی و اسیدی. نشریه مدیریت خاک و تولید پایدار. 5(1): 215- 228.
  4. Adeleke, R., C. Nwangburuka and B. Oboirien, 2017. Origins, roles and fate of organic acids in soils: A review. South African Journal of Botany, 108: 393-406.
  5. Agnello, A. C., D. Huguenot, E. D. Hullebusch and G. Esposito. 2016. Citric acid- and Tween 80-assisted phytoremediation of a co-contaminated soil: alfalfa (Medicago sativa L.) performance and remediation potential. Environmental Science and Pollution Research. 334: 151-159.
  6. Badri, D. V., J.  M. Chaparro, R. F. Zhang, Q. R. Shen, and J. M. Vivanco. 2013. Application of Natural Blends of Phytochemicals Derived from the Root Exudates of Arabidopsis to the Soil Reveal That Phenolic-related Compounds Predominantly Modulate the Soil Microbiome. Journal of Biological Chemistry.288: 4502–4512.
  7. Bowsher, A. W., R. Ali, S. A. Harding, C. J. Tsai and L. A. Donovan. 2016. Evolutionary divergences in root exudate composition among ecologically-contrasting helianthus species. Plos one. 11(1): 0148280.
  8. Chen, L., S. L. Luo, X. J. Li, Y. Wan, J. L. Chen, and C. B. Liu. 2014. Interaction of Cd-hyperaccumulator Solanum nigrum L. and functional endophyte Pseudomonas sp. Lk9 on soil heavy metals uptake. Soil Biology and Biochemistry.68: 300–308.
  9. Chen, Y. L., Y. Q. Guo, Sh. J. Han, C. J. Zou, Y. M. Zhou and G. L. Cheng. 2002. Effect of root derived organic acids on the activation of nutrients in the rhizosphere soil. Journal of Forest Research. 13(2): 115-118.
  10. Chen, Y. X., Q. Lin, Y. M. Luo, Y. F. He, S. J. Zhen, Y. L. Yu, G. M. Tian and M. H. Wong 2003. The role of citric acid on the phytoremediation of heavy metal contaminated soil. Chemosphere. 50: 807-811.
  11. Chen, Z., F. Liu, T. Bu, Y. Liu and J. Zhu. 2016. Effects of organic acids on dissolution of Fe and Mn from weathering coal gangue. Geochimica et Cosmochimica Acta. 35(3): 316–328.
  12. Clarholm, M., U. Skyllberg, A. and Rosling. 2015. Organic acid induced release of nutrients from metal-stabilized soil organic matter -The unbutton model. Soil Biology and Biochemistry. 84: 168-176.
  13. Dakora, F. D., and D. A. Phillips. 2002. Root exudates as mediators of mineral acquisition in low-nutrient environments. In Food Security in Nutrient-Stressed Environments: Exploiting Plants’ Genetic Capabilities (pp. 201-213). Springer, Dordrecht.
  14. Degryse, F., V. K. Verma and E. Smolders. 2008. Mobilization of Cu and Zn by root exudates of dicotyledonous plants in resin buffered solutions and in soil. Plant and Soil. 306: 69–84.
  15. Duarte, B., J. Freitas and I. Cacador 2011. The role of organic acids in assisted phytoremediation processes of salt marsh sediments. Hydrobiologia. 764:169-177.
  16. Fujii, K., M. Aoki and K. Kitayama. 2012. Biodegradation of low molecular weight organic acids in rhizosphere from a tropical montane rain forest. Soil Biology and Biochemistry. 47: 142-148. 
  17. Jones D. L. 1998. Organic acids in the rhizosphere – A critical review, Plant and Soil Journal. 205: 25-44.
  18. Jones, D. L. 2001. Function and mechanism of organic anion Exudation from plant roots. Plant Physiology and Plant Molecular Biology. 52: 527-560.
  19. Jones, D. L. and Darrah, P. R. 1994. Role of root derived organic-acid in the mobilization of nutrient from the rhizosphere. Plant and Soil. 166: 247-257.
  20. Khademi, Z., D. L. Jones M. J. Malakouti Asadi F. and Ardebili, M. 2009. Organic acid mediated nutrient extraction efficiency in three calcareous soils. Australian Journal of Soil Research. 47: 213-220.
  21. Kumar, V., M. Kumar, N. Shrivastava, S. Sandeep Bisht, S. Sharma and A. Ajit Varma. 2016. Interaction among rhizospheric microbes, soil, and plant roots: Influence on micronutrient uptake and bioavailability. Springer International Publishing Switzerland. K.R. Hakeem, M.S. Akhtar (eds.), Plant, Soil and Microbes. pp: 169-185.
  22. Ling, N., W. Raza, J. H. Ma, Q.W. Huang and Q.R. Shen. 2011. Identification and role of organic acids in watermelon root exudates for recruiting Paenibacillus polymyxa SQR-21 in the rhizosphere. European Journal of Soil Biology.47: 374–379.
  23. Ma, Y., R. S. Oliveira, H. Freitas and C. Zhang. 2016. Biochemical and molecular mechanisms of plant-microbe-metal interactions: relevance for phytoremediation. Frontiers in Plant Science. 7: 918.
  24. Marschner, H. 1995. Mineral Nutrition of Higher Plants. (2nd ed.). Academic Press, London.
  25. Martin, B. C., S. J. George, C. A. Price, S. Shahsavari, A. S. Ball, M. Tibbett and M. H. Ryan. 2016. Citrate and malonate increase microbial activity and alter microbial community composition in uncontaminated and diesel-contaminated soil microcosms. Soil. 2: 487–498.
  26. Millaleo, R., M. Reyes-Díaz, A.G. Ivanov, M. L. Mora and M. Alberdi. 2010. Manganese as essential and toxic element for plants: transport, accumulation and resistance mechanisms. Journal of Soil Science and Plant Nutrition. 10(4): 476 – 494.
  27. Moradi, N., M.H. Rasouli-Sadaghiani, E. Sepehr, B. Abdolahi Mandoulakani. 2012. Effects of low-molecular-weight organic acids on phosphorus sorption characteristics in some calcareous soils. Turkish Journal of Agriculture and Forestry. 36: 459-468.
  28. Muhammad, D., F. Chen, J. Zhao, G. Zhang and F. Wu. 2009. Comparison of EDTA- and citric acid-enhanced phytoextraction of heavy metals in artificially metal contaminated soil by Typha angustifolia.  International Journal of Phytoremediation. 11: 558-574.
  29. Najafi, S. and M. Jalali, 2015. Effects of organic acids on cadmium and copper sorption and desorption by two calcareous soils. Environmental Monitoring and Assessment. 187: 585-595.
  30. Nascimento, C. W. A., Amarasiriwardena D. and B. Xing, 2006. Comparison of natural organic acids and synthetic chelates at enhancing phytoextraction of metals from a multi-metal contaminated soil. Environmental Pollution. 140: 114-123.
  31. Oburger, E, G. J. D. Kirk, W. W. Wenzel, M. Puschenreiter and D. L. Jones. 2009. Interactive effects of organic acids in the rhizosphere. Soil Biology and Biochemistry. 41(3): 449–457.
  32. Palomo, L., N. Classen and D. L. Jones. 2006. Differential mobilization of P in the maize rhizosphere by citric acid and potassium citrate. Soil Biology and Biochemistry. 38: 683-692.
  33. Piri, M., E. Sepehr, and Z. Rengel, Z. 2019. Citric acid decreased and humic acid increased Zn sorption in soils. Geoderma, 341: 39-45.
  34. Qin, F., X. Q. Shan and B. Wei. 2004. Effects of low-molecular-weight organic acids and residence time on desorption of Cu, Cd, and Pb from soils. Chemosphere. 57: 253–263.
  35. Rajkumar, M., S. Sandhya, M. N. V. Prasad and H. Freitas. 2012. Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnology. 30: 1562–1574.
  36. Rengel, Z. 2015. Availability of Mn, Zn and Fe in the rhizosphere. Journal of soil science and plant nutrition. Journal of Soil Science and Plant Nutrition. 15(2): 397-409.
  37. Samuels, A. L., M. Fernando and A. D. Glass. 1992. Immunoflorescent localization of plasma membrane H+-ATPase in barley roots and effects of K nutrition. Plant Physiology. 99: 1509-1514.
  38. Sanchez-Rodríguez, A. R., M. C. Del Campillo, J. Torrent and D. L. Jones. 2014. Organic acids alleviate iron chlorosis in chickpea grown on two p-fertilized soils. Journal of Soil Science and Plant Nutrition. 14(2): 292-303.
  39. Sandnes, A., D. E. Toril, and W. Gro. 2005. Organic acids in root exudates and soil solution of Norway spruce and silver birch. . Soil Biology and Biochemistry. 37: 259–269.
  40. Song, J., D. Markewitz, Y. Liu, X. Liu and X. Cui. 2016. The Alleviation of Nutrient Deficiency Symptoms in Changbai Larch (Larix olgensis) Seedlings by the Application of Exogenous Organic Acids. Forests. 7(10): 1-15.
  41. Strobel, W. 2001. Influence of vegetation on low molecular-weight carboxylic acids in soil solution. A review. Geoderma. 99: 169-198.
  42. Strom, L., A. G. Owenb, D. L. Godboldb and D. L. Jonesb, 2005. Organic acid behaviour in a calcareous soil implications for rhizosphere nutrient cycling. Soil Biology and Biochemistry. 37: 2046–2054.
  43. Van Hees, P. A. W., Johansson, E. and D. L. Jones. 2008. Dynamics of simple carbon compounds in two forest soils as revealed by soil solution concentrations and biodegradation kinetics. Plant and Soil. 310:11–23.
  44. Vesely, T., P. Tlustos and J. Szakova, 2011. Organic salts enhanced soil risk elements leaching and bioaccumulation in Pistia stratiotes. PlantSoil and Environment. 57(4): 166–172.
  45. Wu, L. H., Y. M., Luo, P. Christie and M. H. Wong. 2003. Effects of EDTA and low molecular weight organic acids on soil solution properties of a heavy metal polluted soil. Chemosphere. 50: 819–822. 
  46. Wuana, R.A., F. E. Okieimen and J. A. Imborvungu. 2010. Removal of heavy metals from a contaminated soil using organic chelating acids. International Journal of Environmental Science and Technology. 7(3): 485–496.