کاربرد کودهای کندرها یا با رهایش کنترل‌شده فسفری، راهکاری برای افزایش کارایی فسفر و کاهش مخاطرات زیست محیطی‌

نوع مقاله : فنی ترویجی

نویسنده

استاد گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه تبریز، تبریز، ایران

چکیده

فسفر یکی از عناصر غذایی پرمصرف مورد نیاز گیاهان است و کمبود آن در بسیاری از خاک‌های کشاورزی جهان وجود دارد. برای درمان کمبود فسفر از کودهای فسفر استفاده می‌شود که کارایی مصرف آن‌ها کم بوده و پدیده غنی‌شدن آب‌ها و آلودگی محیط‌زیست را نیز به‌طور گسترده ایجاد کرده است. ازطرف‌دیگر، کودهای فسفر از ذخایر محدود و تجدیدناپذیر سنگ فسفات تولید می‌شوند که با گذشت زمان مقدار آن کم شده و قیمت آن گران‌تر می‌شود. این در حالی است که نیاز به مصرف کودهای فسفر برای تأمین غذای مورد نیاز جمعیت در حال رشد جهان زیاد می‌شود. بنابراین، مدیریت کودهای فسفر یک عامل کلیدی در تولید محصولات کشاورزی است. برای بهبود کارایی مصرف فسفر و رشد گیاهان و کاهش مخاطرات محیط‌زیست، استفاده از کودهای کندرها و با رهایش کنترل‌شده فسفر مورد توجه پژوهشگران قرار گرفته است. کود کندرها یا با رهایش کنترل‌شده به کودی گفته می‌شود که سرعت حل‌شدن آن در آب کم‌تر از کودهای محلول در آب رایج بوده و مدت طولانی‌تری عناصر غذایی را به ریشه گیاهان عرضه می‌کند. برخلاف کود کندرها، کود با رهایش کنترل‌شده طوری ساخته می‌شود که سرعت، مدت و الگوی رهایش عنصر غذایی خوب کنترل شده باشد. برای تهیه کودهای کندرها یا با رهایش کنترل‌شده از چندین روش استفاده می‌شود: (1) استفاده از مواد پوشش‌دهنده: این مواد به چند گروه تقسیم می‌شوند: 1- پلیمرها (شامل پلیمرهای زیست‌تخریب‌پذیر مانند کیتوسان، پلیمرهای ابرجاذب آب، کوپلیمرهای پلی‌وینیلیدن کلراید، پلی‌اولفین‌ها، پلی‌اورتان‌ها، رزین‌های اوره-فرمالدئید، پلی‌استرها و رزین‌های آلکید)، 2- گوگرد، 3- گوگرد-پلیمر، 4- اسیدهای آلی، 5- روغن پارافین، 6- رس‌ها، 7- خاکستر بادی؛ (2) تهیه کودهای کندرها از موادی با حل‌پذیری کم یا سرعت معدنی‌شدن کم، (3) تبدیل سنگ فسفات به کود کندرها با روش‌های مختلف مانند اسیدی‌کردن جزئی و استفاده از ریزجانداران حل‌کننده فسفات، (4) تولید کودهای کندرهای فسفر با استفاده از فناوری نانو، (5) تولید کودهای کندرهای فسفر از هیدروکسیدهای دوگانه لایه‌ای، بیوچار و هیدروچار بارگذاری شده با فسفات، (6) تهیه کود کندرهای فسفر از خاکستر بادی. در این مقاله روش‌های تهیه کودهای کندرهای فسفر و اثرهای آن‌ها بر کارایی مصرف فسفر و رشد گیاهان مختلف شرح داده می‌شود. به‌طور کلی، با مصرف کودهای کندرها یا با رهایش کنترل‌شده فسفر در خاک‌های کشاورزی، کارایی مصرف فسفر و رشد گیاهان بهبود می‌یابد.

کلیدواژه‌ها


عنوان مقاله [English]

Sustained/Controlled-Release Phosphorus Fertilizers: An Option for Enhancing Phosphorus Use Efficiency in Agriculture and Abating the Environmental Hazards

نویسنده [English]

  • Nosratollah Najafi
Professor of Soil Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.
چکیده [English]

Phosphorus (P) is a macronutrient of high consumption required by plants. Most agricultural soils around the world are poor in phosphorus and P fertilizers are used as a remedy. Not only are the fertilizers low in use efficiency but their application has also exacerbated the eutrophication of water bodies and the associated environmental pollution. This is while P fertilizers are extracted from the finite and non-renewable phosphate rock reserves, causing their rising prices over time as more P fertilizers will be needed to produce more food for the growing global population. P fertilizer management is, therefore, a key parameter in agricultural production. This is why a lot of attention has been recently paid to the application of sustained/controlled-release P fertilizers (SRF/CRF) in order to improve upon P use efficiency and plant growth at reduced environmental costs. The designation SRF/CRF is due to the lower water solubility of such fertilizers compared to conventional ones so that nutrients are supplied to plant roots over longer periods of time. Unlike SRFs, CRFs are characterized by well-controlled nutrient release rate, pattern, and duration. The methods used to manufacture P SRF include: 1) Coating the fertilizer with such materials as: a) polymers (including biodegradable polymers like chitosan, water-superabsorbent polymers, PVDC copolymers, polyolefins, polyurethanes, urea-formaldehyde resins, polyesters, and alkyd resins), b) sulfur, c) sulfur-polymers, d) organic acids, e) paraffin, f) clays, and g) fly ash; 2) Preparing SRFs from materials with a low solubility or a low mineralization rate; 3) Conversion of phosphate rock into P SRF using such different methods as partial acidification and phosphate solubilizing microorganisms; 4) Manufacturing P SRFs via nanotechnology-based techniques; 5) Producing P SRFs using phosphate-loaded layered double hydroxides, biochar, and hydrsochar; and 6) Using fly ash to manufacture SRF. The present article examines these methods and the effects of each on P use efficiency and the growth of different plants. It is generally concluded that P SRFs or CRFs improve P use efficiency and plant growth.

کلیدواژه‌ها [English]

  • Nanotechnology
  • Phosphorus
  • Slow-release fertilizer
  • Use efficiency
  1. تویسرکانی، ح.، و ف. صداقت. 1391. کیتین و کیتوسان: ساختار، خصوصیات و کاربردها. مجله بوم‌شناسی آبزیان، 2(3): 40–26.
  2. حیدری، ن.، ع. ریحانی‌تبار، ن. نجفی، و ش. اوستان. 1392. رواﺑﻂ ﺷﮑﻞ‌ﻫﺎی ﻓﺴﻔﺮ ﻣﻌﺪﻧﯽ و آﻟﯽ ﺑﺎ رﺷﺪ ذرت و ﺟﺬب ﻓﺴﻔﺮ در ﺑﺮﺧﯽ ﺧﺎکﻫﺎی اﺳﺘﺎن آذربایجان شرقی. مجله ﻣﺪﯾﺮﯾﺖ ﺧﺎک و ﺗﻮﻟﯿﺪ ﭘﺎﯾﺪار، 3(2): 250–237.
  3. سلیم‌پور، س.، ک. خاوازی، ح. نادیان، و ح. بشارتی. 1389. تاثیر خاک فسفات همراه با گوگرد و ریزجانداران بر عملکرد و ترکیب شیمیایی کلزا. پژوهش‌های خاک (علوم خاک و آب)، 24(1): 19–9.
  4. شهبازی، ک.، و ح. بشارتی. 1392. بررسی اجمالی وضعیت حاصلخیزی خاک‌های کشاورزی ایران. نشریه مدیریت اراضی، 1(1): 16–1.
  5. عظیم‌زاده، ی.، ن. نجفی، ع. ریحانی‌تبار، ش. اوستان، ع. ختایی. 1398. اثر کود فسفر و ترکیب‌های هیدروکسید دوگانه لایه‌ای بر پایه بیوچار و هیدروچار بر ماده خشک و غلظت نیتروژن، فسفر و پتاسیم گیاه ذرت. مهندسی زراعی، 42(1): 146–127.
  6. کاظم‌علیلو، س.، ن. نجفی، و ع. ریحانی‌تبار. 1396. افزایش عملکرد و اجزای عملکرد آفتاب‌گردان با مصرف تلفیقی فسفر و لجن فاضلاب در شرایط آبیاری مطلوب و محدود. آب و خاک-دانشگاه فردوسی مشهد، 31(6): 1650–1637.
  7. مطلبی­فرد، ر.، ن. نجفی، ش. اوستان. 1393. اثر شرایط مختلف رطوبت خاک و کودهای روی و فسفر بر فسفر قابل‎استخراج یک خاک آهکی. نشریه دانش آب و خاک، 24(2): 241–227.
  8. نجفی، ن.، ر. احمدی‌نژاد، ن. علی‌اصغرزاد، و ش. اوستان. 1398. اثر تلفیق اوره با کود دامی و دو نوع کمپوست (لجن فاضلاب و پسماند شهری) بر عملکرد دانه، برگ و ساقه گندم و غلظت نیتروژن، فسفر و پتاسیم آن‌ها. نشریه آب و خاک–دانشگاه فردوسی مشهد، 33(1): 81–63.
  9. نجفی، ن.، و ح. توفیقی. 1385. بررسی اثر رایزوسفر گیاه برنج بر شکل‌های فسفر معدنی در خاک‌های شالیزاری شمال ایران: 1– شکل‌های فسفر بومی خاک. مجله علوم کشاورزی ایران، 37(5): 933–919.
  10. نجفی، ن.، و ح. توفیقی. 1390. اثر رژیم رطوبتی و کود فسفر بر فسفر قابل­جذب و شکل‌های فسفر معدنی در برخی خاک‌های شالیزاری شمال ایران. مجله تحقیقات آب و خاک ایران، 42(2): 269–257.
  11. نجفی، ن.، و ح. توفیقی. 1391. اثر رایزوسفر گیاه برنج بر شکل‌های فسفر معدنی در خاک‌های شالیزاری شمال ایران: پس از کاربرد کود فسفر. مجله تحقیقات آب و خاک ایران، 43(3): 242–231.
    1. Adhikari, T., S. Kundu, V. Meena, and A.S. Rao. 2014. Utilization of nano rock phosphate by maize (Zea mays L.) crop in a Vertisol of Central India. Journal of Agricultural Science and Technology A, 4: 384–394.
    2. Alloush, G.A., and R.B. Clark. 2001. Maize response to phosphate rock and arbuscular mycorrhizal fungi in acidic soil. Communications in Soil Science and Plant Analysis, 32: 231–254.
    3. Antonini, S., M.A. Arias, T. Eichert, and J. Clemens. 2012. Greenhouse evaluation and environmental impact assessment of different urine-derived struvite fertilisers as phosphorus sources for plants. Chemosphere, 89: 1202–1210.
    4. Ao, L., L. Qin, H. Kang, Z. Zhou, and H. Su. 2013. Preparation, properties and field application of biodegradable and phosphorus-release films based on fermentation residue. International Biodeterioration and Biodegradation, 82: 134–140.
    5. Bala, N., A. Dey, S. Das, R. Basu, and P. Nandy. 2014. Effect of Hydroxyapatite nanorod on chickpea (Cicer arietinum) plant growth and its possible use as nano-fertilizer. Iranian Journal of Plant Physiology 4: 1061–1069.
    6. Bansiwal, A.K., S.S. Rayalu, N.K. Labhasetwar, A.A. Juwarkar, and S. Devotta. 2006. Surfactant-modified zeolite as a slow release fertilizer for phosphorus. Journal of Agricultural and Food Chemistry, 54(13): 4773–4779.
    7. Barrow, N.J., and A. Debnath. 2014. Effect of phosphate status on the sorption and desorption properties of some soils of northern India. Plant and Soil, 378: 383–395.
    8. Baur, R.J. 2009. Waste activated sludge stripping to remove internal phosphorus. US patent 7604740B2.
    9. Benicio, L.P., V.R.L. Constantino, F.G. Pinto, L. Vergutz, Tronto J., and L.M. Costa 2017. Layered double hydroxides: New technology in phosphate fertilizers based on nanostructured materials. ACS Sustainable Chemistry & Engineering, 5: 399–409.
    10. Benzian, B., J. Bolton, and G.E.G. Mattingly. 1969.  Soluble and slow–release PK–fertilizers for seedlings and transplants of Picea sitchensis and Picea abies in two English nurseries. Plant and Soil, 31(2): 238–256.
    11. Cabeza, R., B. Steingrobe, W. Romer, and N. Claassen. 2011. Effectiveness of recycled P products as P fertilisers, as evaluated in pot experiments. Nutrient Cycling in Agroecosystems, 91: 173–184.
    12. Chhowalla, M. 2017. Slow release nanofertilizers for bumper crops. ACS Central Science, 3: 156–157.
    13. Conley, D.J., H.W. Paer, R.W. Howarth, D.F. Boesch, S.P. Seitzinger, K.E. Havens, C. Lancelot, and G.E. Likens. 2009. Controlling eutrophication: Nitrogen and phosphorus. Science, 323(5917): 1014–1015.
    14. Cordell, D., and T. Neset. 2014. Phosphorus vulnerability: a qualitative framework for assessing vulnerability of national and regional food systems to the multidimensional stressors of phosphorus scarcity. Global Environmental Change, 24:108–122.
    15. Cordell, D., J.O. Drangert, and S. White. 2009. The story of phosphorus: global food security and food for thought. Global Environmental Change, 19(2): 292–305.
    16. Davidson, D., and F.X. Gu. 2012. Materials for sustained and controlled release of nutrients and molecules to support plant growth. Journal of Agricultural and Food Chemistry, 60: 870–876.
    17. Dodds, W.K., W.W. Bouska, J.L. Eitzmann, T.J. Pilger, K.L. Pitts, A.J. Riley, J.T. Schloesser, and D.J. Thornbrugh. 2009. Eutrophication of U.S. freshwaters: analysis of potential economic damages. Environmental Science & Technology, 43:12–19.
    18. Dong, Y.J., M.R. He, Z.L. Wang, W.F. Chen, J. Hou, X.K. Qiu, and J.W. Zhang. 2016. Effects of new coated release fertilizer on the growth of maize. Journal of Soil Science and Plant Nutrition, 16(3): 637–649.
    19. Elser, J., and E. Bennett. 2011. Phosphorus: a broken biogeochemical cycle. Nature 478:29–31.
    20. Elser, J.J., S.R. Carpenter, and W.A. Brock. 2014. Regime shift in fertiliser commodities indicates more turbulence ahead for food security. PLoS One 9: e93998.
    21. Everaert, M., F. Degryse, M.J. McLaughlin, D.D. Vos, and E. Smolders. 2017. Agronomic effectiveness of granulated and powdered P-exchanged Mg-Al LDH relative to struvite and MAP. Journal of Agricultural and Food Chemistry, 65(32):6736–6744.
    22. Everaert, M., R. Warrinnier, S. Baken, J. Gustafsson, D.D. Vos, and E. Smolders 2016. Phosphate–exchanged Mg–Al layered double hydroxides: A new slow release phosphate fertilizer. ACS Sustainable Chemistry & Engineering 4(8):4280–4287.
    23. Gajic, A., and H.J. Koch. 2012. Sugar beet (Beta vulgaris L.) growth reduction caused by hydrochar is related to nitrogen supply. Journal of Environmental Quality, 41:1067–1075.
    24. Gao, X., C. Li, M. Zhang, R. Wang, and B. Chen. 2015. Controlled release urea improved the nitrogen use efficiency, yield and quality of potato (Solanum tuberosum L.) on silt loamy soil. Field Crops Research, 181:60−68.
    25. Giroto, A., S. Fidélis, and C. Ribeiro. 2015. Controlled release from hydroxyapatite nanoparticles incorporated into biodegradable, soluble host matrixes. RSC Advances, 5:104179−104186.
    26. Gosling, P., A. Mead, M. Proctor, J.P. Hammond, and G.D. Bending 2013. Contrasting arbuscular mycorrhizal communities colonizing different host plants show a similar response to a soil phosphorus concentration gradient. New Phytologist, 198: 546–556.
    27. Gowariker, V., V.N. Krishnamurthy, S. Gowariker, M. Dhanorkar, and K. Paranjape. 2009. The fertilizer encyclopedia. John Wiley & Sons, Inc. Hoboken, New Jersey, USA.
    28. Grant, C.A., D.N. Flaten, D.J. Tomasiewicz, and S.C. Sheppard. 2001. The importance of early season phosphorus nutrition. Canadian Journal of Plant Science, 81: 211–224.
    29. Greaves, J., P. Hobbs, D.Chadwick, and P. Haygarth. 1999. Prospects for the recovery of phosphorus from animal manures: a review. Environmental Technology, 20: 697–708.
    30. Gryndler, M., J. Larsen, H. Hrselova, V. Rezacova, H. Gryndlerova, and J. Kubat. 2006. Organic and mineral fertilization, respectively, increase and decrease the development of external mycelium of arbuscular mycorrhizal fungi in a long-term field experiment. Mycorrhiza, 16: 159–166.
    31. Guan, Y., C. Song, Y. Gan, and F.M. Li. 2014. Increased maize yield using slow-release attapulgite-coated fertilizers. Agronomy for Sustainable Development, 34: 657–665.
    32. Hagin, J., and R. Harrison. 1993. Phosphate rocks and partially-acidulated phosphate rocks as controlled–release P fertilizers. Fertilizer Research, 35: 25–31.
    33. Halajnia, A., S. Oustan, N. Najafi, A.R. Khataee, and A. Lakzian 2013. Adsorption–desorption characteristics of nitrate, phosphate and sulfate on Mg-Al layered double hydroxide. Applied Clay Science, 80–81: 305–312.
    34. Hamdali, H., B. Bouizgarne, M. Hafidi, A. Lebrihi, M. Virolle, and Y. Ouhdouch. 2008. Screening for rock phosphate solubilizing actinomycetes from Moroccan phosphate mines. Applied Soil Ecology, 38(1): 12–19.
    35. Hamdallah, G. 2000. Soil fertility management: the need for new concepts in the region. In: Proceedings of the Regional Workshop on Soil Fertility Management through Farmer Field Schools in the Near East, 2 – 5 October 2000, Amman, Jordan. Food and Agriculture Organization of the United Nations, Regional Office for the Near East.
    36. Hart, M.R., B.F. Quin, and M.L. Nguyen. 2004. Phosphorus runoff from agricultural land and direct fertiliser effects. Journal of Environmental Quality, 33: 1954–1972.
    37. Havlin, J.L., J.D. Beaton, S.L. Tisdale, and W.L. Nelson. 1999. Soil fertility and fertilizers: An introduction to nutrient management. Sixth Edition, Prentice Hall, New Jersey, USA.
    38. He, Z.L., V.C. Baligar, D.C. Martens, K.D. Ritchey, and M. Elrashidi. 1999. Effect of byproduct, nitrogen fertilizer, and zeolite on phosphate rock dissolution and extractable phosphorus in acid soil. Plant and Soil, 208: 199–207.
    39. Hermassi, M., C. Valderrama, N. Moreno, O. Font, X. Querol, N.H. Batis, and J.L. Cortina. 2017. Fly ash as reactive sorbent for phosphate removal from treated waste water as a potential slow release fertilizer. Journal of Environmental Chemical Engineering, 5: 160–169.
    40. Jaffer, Y., T. Clark, P. Pearce, and S. Parsons. 2002. Potential phosphorus recovery by struvite formation. Water Research, 36: 1834–1842.
    41. Jia, X., Z. Ma, G. Zhang, J. Hu, Z. Liu, H. Wang, and F. Zhou. 2013. Polydopamine film coated controlled–release multielement compound fertilizer based on mussel-inspired chemistry. Journal of Agricultural and Food Chemistry, 61: 2919–292.
    42. Jing, J., Y. Rui, F. Zhang, Z. Rengel, and J. Shen. 2010. Localized application of phosphorus and ammonium improves growth of maize seedlings by stimulating root proliferation and rhizosphere acidification. Field Crops Research, 119: 355–364.
    43. Jones, J.B. Jr. 2012. Plant nutrition and soil fertility manual. Second Edition, CRC Press, Taylor & Francis Group, Boca Raton, FL. USA.
    44. Joseph, S., and J. Lehmann. 2009. Biochar for environmental management: Science and ‎technology. Earthscan‎‏, London, UK.
    45. Kahiluoto, H., E. Ketoja, and M. Vestberg. 2000. Promotion of utilization of arbuscular mycorrhiza through reduced P fertilization 1. Bioassays in a growth chamber. Plant and Soil, 227: 191–206.
    46. Karan, B.Z., and A.N. Ay. 2012. Layered double hydroxides-multifunctional nanomaterials. Chemical Papers, 66(1): 1–10.
    47. Koilraj, P., C.A. Antonyraj, V. Gupta, C.R.K. Reddy, and S. Kannan. 2013. Novel approach for selective phosphate removal using colloidal layered double hydroxide nanosheets and use of residue as fertilizer. Applied Clay Science, 86: 111–118.
    48. Kottegoda, N., C. Sandaruwan, G. Priyadarshana, A. Siriwardhana, U.A. Rathnayake, D.M.B. Arachchige, A.R. Kumarasinghe, D. Dahanayake, V. Karunaratne, and G.A.J. Amaratunga. 2017. Urea–hydroxyapatite nanohybrids for slow release of nitrogen. ACS Nano, 11(2): 1214–1221.
    49. Le Corre, K.S., E. Valsami–Jones, P. Hobbs, and S.A. Parsons. 2009. Phosphorus recovery from wastewater by struvite crystallization: a review. Critical Reviews in Environmental Science and Technology, 39: 433–477. 
    50. Lederer, J., D. Laner, and J. Fellner. 2014. A framework for the evaluation of anthropogenic resources: the case study of phosphorus stocks in Austria. Journal of Cleaner Production, 84:368–381.
    51. Lehmann, J., M.C. Rillig, J. Thies, C.A. Masiello, W.C. Hockaday, and D. Crowley. 2011. Biochar effects on soil biota: A review. Soil Biology and Biochemistry, 43: 1812–1836.
    52. Li, R., J.J. Wang, B., Zhou M.K. Awasthi, A. Ali, Z. Zhang, L.A. Gaston, A.H., and A. Mahar. 2016. Enhancing phosphate adsorption by Mg/Al layered double hydroxide functionalized biochar with different Mg/Al ratios. Science of the Total Environment, 559: 121–129.
    53. Liang, R., M.Z. Liu, and L. Wu. 2007. Controlled release NPK compound fertilizer with the function of water retention. Reactive and Functional Polymers, 67: 769–779.
    54. Libra, J.A., K.S. Ro, C. Kammann, A. Funke, N.D., Berge Y. Neubauer, M. Titirici, C. Fuhner, O. Bens, J. Kern, and K.H. Emmerich. 2011. Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels, 2(1): 89–24.
    55. Liu, R.Q., and R. Lal. 2014. Synthetic apatite nanoparticles as a phosphorus fertilizer for soybean (Glycine max). Scientific Reports–Nature, 4: 5686.
    56. Lubkowski, K. 2014. Coating of fertilizer granules with biodegradable materials as a preparation method of controlled release fertilizer. Environmental Engineering and Management Journal, 13(10): 2573–2581.
    57. Lubkowski, K., A. Smorowska, B. Grzmil, and A. Kozłowska. 2015. Controlled-release fertilizer prepared using a biodegradable aliphatic copolyester of poly(butylene succinate) and dimerized fatty acid. Journal of Agricultural and Food Chemistry, 63(10): 2597–2605.
    58. Ma, Z., X. Jia, G. Zhang, J. Hu, X. Zhang, Z. Liu, H. Wang, and F. Zhou. 2013. pH-responsive controlled-release fertilizer with water retention via atom transfer radical polymerization of acrylic acid on mussel- inspired initiator. Journal of Agricultural and Food Chemistry, 61: 5474–5482.
    59. Malhi, S.S., L.K. Haderlein, D.G. Pauly, and A.M. Johnston. 2000. Improving fertilizer phosphorus use efficiency. Better Crops, 86: 8–9.
    60. Marschner, P. 2012. Marschner’s mineral mutrition of higher plants. Third Edition, Elsevier, Academic Press, Waltham, USA.
    61. Mastronardi, E., P. Tsae, X. Zhang, C. Monreal, and M.C. DeRosa. 2015. Strategic role of nanotechnology in fertilizers: Potential and limitations. Pp. 25–67. In: Rai M., Duran N., Ribeiro C., Mattoso L. (Eds) Nanotechnologies in food and agriculture. Springer International Publishing, Switzerland.
    62. McLaughlin, M.J., T.M. McBeath, R. Smernik, S.P. Stacey, B. Ajiboye, and C. Guppy. 2011. The chemical nature of P accumulation in agricultural soils –implications for fertiliser management and design: an Australian perspective. Plant and Soil, 349: 69–87.
    63. Mourya, V.K., and N.N. Inamdar. 2008. Chitosan–modifications and applications: Opportunities galore. Reactive and Functional Polymers, 68(6): 1013–1051.
    64. Murray, H. 2000. Traditional and new applications for kaolin, smectite, and palygorskite: a general overview. Applied Clay Science, 17(5–6): 207–221.
    65. Nadeem, M., A. Mollier, C. Morel, A. Vives, L. Pruud’homme, and S. Pellerin. 2011. Relative contribution of seed phosphorus reserves and exogenous phosphorus uptake to maize (Zea mays L.) nutrition during early growth stages. Plant and Soil, 346: 231–244.
    66. Nair, R., S.H. Varghese, B.G. Nair, T. Maekawa, Y. Yoshida, and D.S. Kumar. 2010. Nanoparticulate material delivery to plants. Plant Science, 179: 154–163.
    67. Nelson, K.A., S.M. Paniagua, and P.P. Motavalli. 2009. Effect of polymer coated urea, irrigation, and drainage on nitrogen utilization and yield of corn in a clay pan soil. Agronomy Journal, 101(3):681–687.
    68. Ni, B., S. Lu, and M. Liu. 2012. Novel multinurient fertilizer and its effect on slow release, water holding, and soil amending. Industrial & Engineering Chemistry Research, 51(40):12993–13000.
    69. Olad, A., H. Zebhi, D.Salari, A. Mirmohseni, and A. Reyhanitabar. 2018. Slow-release NPK fertilizer encapsulated by carboxymethyl cellulose-based nanocomposite with the function of water retention in soil. Materials Science and Engineering C: Materials for Biological Applications, 90: 333–340.
    70. Omar, S.A. 1998. The role of rock phosphate solubilizing fungi and vesicular arbuscular mycorrhiza (VAM) in growth of wheat plants fertilized with rock phosphate. World Journal of Microbiology and Biotechnology, 14: 211–219.
    71. Panhwar, Q.A., O. Radziah, A.R. Zaharah, M. Sariah, and I.M. Razi. 2011. Role of phosphate solubilizing bacteria on rock phosphate solubility and growth of aerobic rice. Journal of Environmental Biology, 32(5):607–612.
    72. Piccini, D., and R. Azcon. 1987. Effect of phosphate-solubilizing bacteria and vesicular-arbuscular mycorrhizal fungi on the utilization of Bayovar rock phosphate by alfalfa plants using a sand-vermiculite medium. Plant and Soil, 101(1): 45–50.
    73. Pickering, H.W., N.W. Menzies, and M.N. Hunter. 2002. Zeolite/rock phosphate–a novel slow release phosphorus fertiliser for potted plant production. Scientia Horticulturae, 94(3–4): 333–343.
    74. Pitman, M.G., and A. Lauchli. 2002. Global impact of salinity and agricultural ecosystems. Pp. 3–20. In: Lauchli A. and Luttge U. (eds.), Salinity: Environment-Plants-Molecules. Kluwer Academic Publishers, the Netherlands.
    75. Rajan, S.S.S., M.B. O'Connor, and A.G. Sinclair. 1994. Partially acidulated phosphate rocks: Controlled release phosphorus fertilizers for more sustainable agriculture. Fertilizer Research, 37: 69–78.
    76. Rashidzadeh, A., A. Olad, and A. Reyhanitabar. 2015. Hydrogel/clinoptilolite nanocomposite–coated fertilizer: swelling, water–retention and slow-release fertilizer properties. Polymer Bulletin, 72: 2667–2684.
    77. Reijnders, L. 2014. Phosphorus resources, their depletion and conservation, a review. Resources, Conservation and Recycling, 93: 32–49.
    78. Sainz, M.J., M.T. Taboada-Castro, and A. Vilarino. 1998. Growth, mineral nutrition and mycorrhizal colonization of red clover and cucumber plants grown in a soil amended with composted urban wastes. Plant and Soil, 205: 85–92.
    79. Sarkar, S., S.C. Datta, and D.R. Biswas. 2015. Effect of fertilizer loaded nanoclay/superabsorbent polymer composites on nitrogen and phosphorus release in soil. Proceedings of the National Academy of Sciences, India, Section B: Biological Sciences, 85(2): 415–421. Springer India.
    80. Schultz, J.J., D.I. Gregory, and O.P. Engelstad. 1992. Phosphate fertilizers and the environment. International Fertilizer Development Centre, Muscle Shoals, Alabama, USA.
    81. Sharma, S.B., R.Z. Sayyed, M.H. Trivedi, and T.A. Gobi. 2013. Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Springer plus, 2(587): 1–14.
    82. Shaviv, A., and R.L. Mikkelsen. 1993. Controlled-release fertilizers to increase efficiency of nutrient use and minimize environmental degradation- A review. Fertilizer Research, 35(1–2): 1–12.
    83. Shoji, S. 2005. Innovative use of controlled availability fertilizers with high performance for intensive agriculture and environmental conservation. Science in China Series C: Life Sciences, 48: 912–920.
    84. Sohi, S.P., E. Krull, E. Lopez-Capel, and R. Bol. 2010. A review of biochar and its use and function in soil. Advances in Agronomy, 105: 47–82.
    85. Taalab, A.S., and M.A. Badr. 2007. Phosphorous availability from compacted rock phosphate with nitrogen to sorghum inoculated with phospho–bacterium. Journal of Applied Science and Research, 3: 195–201.
    86. Talboys, P.J., J. Heppell, T. Roose, J.R. Healey, D.L. Jones, and P.J.A. Withers. 2016. Struvite: a slow-release fertiliser for sustainable phosphorus management? Plant and Soil, 401: 109–123.
    87. Teixeira, R.D.S., I.R. da Silva, R.N. de Sousa, M. Mattiello, and E.M.B. Soares. 2016. Organic acid coated-slow-release phosphorus fertilizers improve P availability and maize growth in a tropical soil. Journal of Soil Science and Plant Nutrition, 16(4): 1097–1112.
    88. Teodorescu, M., A. Lungu, P.O. Stanescu, and C. Neamtu. 2009. Preparation and properties of novel
      slow–release NPK agrochemical formulations based on poly (acrylic acid) hydrogels and liquid fertilizers. Industrial & Engineering Chemistry Research, 48: 6527–6534.
    89. Tian, C., X. Zhou, Q. Liu, J. Peng, W. Wang, Z. Zhang, Y. Yang, H. Song, and C. Gun. 2016. Effects of a controlled–release fertilizer on yield, nutrient uptake, and fertilizer usage efficiency in early ripening rapeseed (Brassica napus L.). Journal of Zhejiang University–Science B, 17(10): 775–768.
    90. Trenkel, M.E. 2010. Slow- and controlled-release and stabilized fertilizers: An option for enhancing nutrient efficiency in agriculture. Second edition, International Fertilizer Industry Association (IFA), Paris, France
    91. Van Geel, M., M. De Beenhouwer, T. Ceulemans, K. Caes, A. Ceustermans, D. Bylemans, A. Gomand, B. Lievens, and O. Honnay. 2016. Application of slow–release phosphorus fertilizers increases arbuscular mycorrhizal fungal diversity in the roots of apple trees. Plant and Soil, 402: 291–301.
    92. Wan, S., S. Wang, Y. Li, and B. Gao. 2017. Functionalizing biochar with Mg-Al and Mg-Fe layered double hydroxides for removal of phosphate from aqueous solutions. Journal of Industrial and Engineering Chemistry, 47: 246–253.
    93. Weaver, D.M., G.S.P. Ritchie, G.C. Anderson, and D.M. Deeley. 1988. Phosphorus leaching in sandy soils. I. Short term effects of fertilizer applications and environmental conditions. Australian Journal of Soil Research, 26:177–190.
    94. Wilsenach, J.A .A, C.A.H. Schuurbiers, and M.C.M. van Loosdrecht. 2007. Phosphate and potassium recovery from source separated urine through struvite precipitation. Water Research, 41:458–466.
    95. Wilson, M.A., N.H. Tran, A.S. Milev, G.S.K. Kannangara, H. Volk, and G.Q.M. Lu. 2008. Nanomaterials in soils. Geoderma, 146: 291–302.
    96. Withers, P.J.A., C. Neal, H.P. Jarvie, and D.G. Doody. 2014. Agriculture and eutrophication: where do we go from here? Sustainability, 6(9): 5853–5875.
    97. Withers, P.J.A., K.C. van Dijk, T. Neset, T. Nesme, O. Oenema, G.H. Rubak, O.F. Schoumans, B. Smit, and S. Pellerin. 2015. Stewardship to tackle global phosphorus inefficiency: the case of Europe. Ambio, 44(Suppl. 2):193–206.
    98. Wu, L., and M. Liu. 2008. Preparation and properties of chitosan-coated NPK compound fertilizer with
      controlled–release and and water-retention. Carbohydrate Polymers, 72(2): 240–247.
    99. Xie, L., M. Liu, B. Ni, X. Zhange, and Y. Wang. 2010. Slow–release nitrogen and boron fertilizer from a functional superabsorbent formulation based on wheat straw and attapulgite. Chemical Engineering Journal, 167: 342–348.
    100. Yan, X., J.Y. Jin, P. He, and M.Z. Liang. 2008. Recent advances on the technologies to increase fertilizer use efficiency. Agricultural Sciences in China, 7(4): 469–479.
    101. Yoshimura, M., and K. Byrappa. 2008. Hydrothermal processing of materials: past, present and future. Journal of Materials Science, 48: 2085–2103.
    102. Zhang, Q.L., Zhang, M., Tian, W.B., 2001. Leaching characteristics of controlled release and common fertilizers and their effects on soil and ground water quality. Soil Environ. Sci. 10, 98–103.
    103. Zhang, M., B. Gao, J. Chen, Y. Li, A.E. Creamer, and H. Chen.2014b. Slow-release fertilizer encapsulated by graphene oxide films. Chemical Engineering Journal, 255: 107–113.
    104. Zhang, M., B. Gao, J. Fang, A.E. Creamer, and J.L. Ullman. 2014a. Self-assembly of needle-like layered double hydroxide (LDH) nanocrystals on hydrochar: Characterization and phosphate removal ability. RSC Advances, 4(53): 28171–28175.
    105. Zhang, M., B. Gao, Y. Yao, and Inyang M. 2013. Phosphate removal ability of biochar/MgAl-LDH ultra-fine composites prepared by liquid-phase deposition. Chemosphere, 92: 1042–1047.
    106. Zhao, G., Y. Liu, Y. Tian, and Y. Sun. 2010. Preparation and properties of macromolecular slow–release fertilizer containing nitrogen, phosphorus and potassium. Journal of Polymer Research, 17:119–125.
    107. Zhong, K., Z.T. Lin, X.L. Zheng, G.B. Jiang, Y.S. Fang, X.Y. Mao, and Z.W. Liao. 2013. Starch derivative-based superabsorbent with integration of water-retaining and controlled-release fertilizers. Carbohydrate Polymers, 92(2):1367–1376.