نوع مقاله : فنی ترویجی

نویسندگان

1 دانشجوی دکتری، گروه علوم و مهندسی خاک، دانشکده مهندسی و فناوری کشاورزی، دانشگاه تهران

2 استاد گروه علوم و مهندسی خاک، دانشکده مهندسی و فناوری کشاورزی، دانشگاه تهران.

3 استادیار پژوهشکده کشاورزی هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای

4 دانشیار گروه علوم و مهندسی خاک، دانشکده مهندسی و فناوری کشاورزی، دانشگاه تهران

5 استاد گروه علوم میکروبی، خاک و گیاه، دانشگاه ایالتی میشیگان، میشیگان، ایالات‌متحده

چکیده

افزایش غلظت گازهای گلخانه­ای اثرات جبران‌ناپذیری بر تغییر اقلیم، محیط‌زیست و سلامت بشر دارد. دی‌اکسید کربن (CO2)، متان (CH4) و نیتروزاکساید (N2O) گازهای گلخانه­ای اصلی هستند. فعالیت میکروبی، تنفس ریشه، فرآیندهای تجزیه شیمیایی و همین‌طور تنفس هتروتروفی موجودات خاک منجر به تولید گازهای گلخانه­ای در خاک­ها می­گردند. میزان انتشار گازهای گلخانه­ای متأثر از عوامل گوناگون محیطی و مدیریتی است. جریان کربن از خاک به اتمسفر به­صورت دی‌اکسید کربن ناشی از تنفس و سایر فعالیت­های موجودات زنده خاک است. نیتروزاکساید از طریق فرآیندهای نیتریفیکاسیون و دنیتریفیکاسیون و متان با فرآیند متانوژنز میکروبی تحت شرایط غیرهوازی تولید می­شود. میزان انتشار گازهای گلخانه­ای با استفاده از روش­های گوناگونی اندازه­گیری می­شود که متداول­ترین نوع آن روش اتاقک بسته است. مدیریت صحیح خاک­های کشاورزی پتانسیل قابل‌توجهی در کاهش انتشار گازهای گلخانه­ای دارد. به­کارگیری تناوب زراعی، استفاده از محصولات پوششی، اعمال روش­های خاک­ورزی حفاظتی، نگهداری بقایای محصولات و پرهیز از سوزاندن یا حذف نمودن آن‌ها، از جمله روش­های مدیریتی مناسب جهت کاهش انتشار دی‌اکسید کربن از خاک هستند. راه­کارهایی از قبیل مدیریت بهتر نیتروژن از طریق کاربرد به‌موقع کودهای نیتروژنی و متناسب با مقدار نیاز محصول و تقسیط­ آن‌ها در مراحل گوناگون رشد گیاه، گنجاندن محصولات لگوم در تناوب زراعی، مدیریت مناسب بقایای گیاهی، استفاده از کودهای آهسته رهش و مصرف مواد بازدارنده­ نیتریفیکاسیون و دنیتریفیکاسیون باعث کاهش انتشار نیتروزاکساید از خاک می­گردند. کاهش انتشار متان نیز از طریق زهکشی شالیزارها به‌منظور ایجاد تهویه مناسب برای اکسیداسیون متان و تجزیه بقایای گیاهی قبل از غرقاب شدن از طریق خاک­ورزی یا تبدیل آن‌ها به کمپوست امکان­پذیر است.

کلیدواژه‌ها

عنوان مقاله [English]

Sustainable soil management and its role in mitigating greenhouse emissions

نویسندگان [English]

  • Morad Mirzai 1
  • Manouchehr Gorji 2
  • Ebrahim Moghiseh 3
  • Hossein Asadi 4
  • Ehsan Razavi toosi 5

1 Ph.D Student, Department of Soil Science and Engineering, Faculty of Agricultural Engineering and Technology, Tehran University

2 Prof., Department of Soil Science and Engineering, Faculty of Agricultural Engineering and Technology, Tehran University

3 Assistant Professor of Soil Science, Nuclear Agriculture School, Nuclear Science and Technology Research Institute.

4 Associate Prof. Department of Soil Science and Engineering, Faculty of Agricultural Engineering and Technology, Tehran University

5 Prof., Department of Plant, Soil and Microbial Sciences, Michigan State University, Michigan, USA.

چکیده [English]

Increasing concentrations of greenhouse gases such as carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) in the atmosphere and the consequent climate change have irreversible effects on the environment and human health. Greenhouse gases in the soil are produced by microbial activity, root respiration, chemical decomposition, and heterotrophic respiration of organisms; the carbon flux from the soil in the form of carbon dioxide is caused by respiration and other activities of soil organisms, nitrous oxide is produced by nitrification and denitrification processes, and methane is produced by microbial methanogenesis under anaerobic conditions. This is while various environmental and managerial factors might affect their concentrations in the soil. Proper management of agricultural soils offers a significant potential to reduce greenhouse emissions. For instance, crop rotation, cover crop farming, conservation tillage, crop residues retention, and avoiding plant residue burning or removal serve as appropriate management practices to reduce carbon dioxide emission. Strategies employed to mitigate nitrous oxide emission include better nitrogen management, well-planned application of nitrogen fertilizers only to meet crop requirements in a timely manner, reduced application of nitrogen fertilizers tailored to the different stages of plant growth, using Legume plants in crop rotation, proper crop residue management, use of slow-release fertilizers, and application of nitrification and denitrification inhibitors. Methane emissions may be reduced through drainage of rice paddies to provide adequate ventilation for methane oxidation and tillage or composting to decompose crop residues before flooding.

کلیدواژه‌ها [English]

  • Agriculture
  • Carbon dioxide
  • Climate change
  • Conservative agriculture
  • Global warming
  • Methane
  • Nitrous oxide
  1. احمدی، ک.، عبادزاده، ح.ر.، حاتمی، ف.، عبدشاه، ه.، کاظمیان، آ. 1399 .آمارنامه کشاورزی سال زراعی 98- 1397. وزارت جهاد کشاورزی، معاونت برنامه­ریزی و اقتصادی، مرکز فناوری اطلاعات و ارتباطات، جلد اول، محصولات زراعی. ص 7.
  2. عبادزاده، ح.ر.، احمدی، ک.، محمد نیا افروزی، ش.، عباس طاقانی، ر.، عباسی، م.، یاری، ش. 1399. آمارنامه کشاورزی سال زراعی 1398. وزارت جهاد کشاورزی، معاونت برنامه­ریزی و اقتصادی، مرکز فناوری اطلاعات و ارتباطات، جلد دوم، ص 175.
  3. Abdalla, M., Wattenbach, M., Smith, P., Ambus, P., Jones, M., and M. Williams. 2009. Application of the DNDC model to predict emissions of N2O from Irish agriculture. Geoderma. 151(3-4): 327-337.
  4. Akiyama, H., Yan, X., and K. Yagi. 2010. Evaluation of effectiveness of enhanced‐efficiency fertilizers as mitigation options for N2O and NO emissions from agricultural soils: meta‐Global Change Biology. 16(6): 1837-1846.
  5. Ali, M. A., Farouque, M. G., Haque, M., and A. ul Kabir. 2012. Influence of soil amendments on mitigating methane emissions and sustaining rice productivity in paddy soil ecosystems of Bangladesh. Journal of Environmental Science and Natural Resources. 5(1): 179-185.
  6. Ali, M. A., Oh, J. H., and P. J. Kim. 2008. Evaluation of silicate iron slag amendment on reducing methane emission from flood water rice farming. Agriculture, ecosystems and environment. 128(1-2): 21-26.
  7. Alvarez, R. 2005. A review of nitrogen fertilizer and conservation tillage effects on soil organic carbon storage. Soil Use and Management. 21(1), 38-52.
  8. D’Amelio, M. T. S., Gatti, L. V., Miller, J. B., and P. Tans. 2009. Regional N2O fluxes in Amazonia derived from aircraft vertical profiles. Atmospheric Chemistry and Physics. 9(22): 8785-8797.
  9. Baggs, E. M. 2008. A review of stable isotope techniques for N2O source partitioning in soils: recent progress, remaining challenges and future considerations. Rapid Communications in Mass Spectrometry: An International Journal Devoted to the Rapid Dissemination of Up‐to‐the‐Minute Research in Mass Spectrometry. 22(11): 1664-1672.
  10. Benbi, D. K., Toor, A. S., and S. Kumar. 2012. Management of organic amendments in rice-wheat cropping system determines the pool where carbon is sequestered. Plant and Soil. 360(1-2):145-162.
  11. Butterbach-Bahl, K., Baggs, E. M., Dannenmann, M., Kiese, R., and S. Zechmeister-Boltenstern. 2013. Nitrous oxide emissions from soils: how well do we understand the processes and their controls? Philosophical Transactions of the Royal Society B: Biological Sciences. 368(1621): 20130122.
  12. Butterbach-Bahl, K., Diaz-Pines, E., and M. Dannenmann. 2012. Soil trace gas emissions and climate change. Global environmental change. Springer Verlag, Berlin.
  13. Butterbach-Bahl, K., Kesik, M., Miehle, P., Papen, H., and C. Li. 2004. Quantifying the regional source strength of N-trace gases across agricultural and forest ecosystems with process based models. Plant and Soil. 260(1-2): 311-329.
  14. CAST, 2011.Carbonsequestrationandgreenhousegas fluxes inagriculture: Challenges andopportunities.Task Force Report No.142. Ames, IA: Council for Agricultural Science and Technology.
  15. Cerri, C. C., Bernoux, M., Cerri, C. E. P., and C. Feller. 2004. Carbon cycling and sequestration opportunities in South America: the case of Brazil. Soil Use and Management. 20(2): 248-254.
  16. Chapuis‐Lardy, L. Y. D. I. E., Wrage, N., Metay, A., CHOTTE, J. L., and M. Bernoux. 2007. Soils, a sink for N2O? A review. Global Change Biology. 13(1): 1-17.
  17. Chen, Z., Wang, H., Liu, X., Zhao, X., Lu, D., Zhou, J., and C. Li. 2017). Changes in soil microbial community and organic carbon fractions under short-term straw return in a rice–wheat cropping system. Soil and Tillage Research. 165: 121-127.
  18. Christiansen, J. R., Korhonen, J. F., Juszczak, R., Giebels, M., and M. Pihlatie. 2011. Assessing the effects of chamber placement, manual sampling and headspace mixing on CH 4 fluxes in a laboratory experiment. Plant and soil. 343(1-2): 171-185.
  19. Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., and C. Jones. 2014. Carbon and other biogeochemical cycles. In Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 465-570). Cambridge University Press.
  20. Cicerone, R. J., and R. S. Oremland. 1988. Biogeochemical aspects of atmospheric methane. Global biogeochemical cycles. 2(4): 299-327.
  21. Corton, T. M., Bajita, J. B., Grospe, F. S., Pamplona, R. R., Assis, C. A., Wassmann, R., ... and L. V. Buendia. 2000. Methane emission from irrigated and intensively managed rice fields in Central Luzon (Philippines). Nutrient cycling in Agroecosystems. 58(1-3): 37-53.
  22. Dong, H., Yao, Z., Zheng, X., Mei, B., Xie, B., Wang, R. and J. Zhu. 2011. Effect of ammonium-based, non-sulfate fertilizers on CH4 emissions from a paddy field with a typical Chinese water management regime. Atmospheric Environment. 45(5): 1095-1101.
  23. Follett, R. F. 2001. Organic carbon pools in grazing land soils (pp. 65-86). Lewis Publishers, Boca Raton, Florida.
  24. Forbrich, I., Kutzbach, L., Hormann, A., and M. Wilmking. 2010. A comparison of linear and exponential regression for estimating diffusive CH4 fluxes by closed-chambers in peatlands. Soil Biology and Biochemistry. 42(3): 507-515.
  25. Freibauer, A., and M. Kaltschmitt. 2003. Controls and models for estimating direct nitrous oxide emissions from temperate and sub-boreal agricultural mineral soils in Europe. Biogeochemistry. 63(1): 93-115.
  26. Doolittle, J. A., Jenkinson, B., Hopkins, D., Ulmer, M., and W. Tuttle. 2006. Hydropedological investigations with ground-penetrating radar (GPR): Estimating water-table depths and local ground-water flow pattern in areas of coarse-textured soils. Geoderma. 131(3-4): 317-329.
  27. Galloway, J. N., Townsend, A. R., Erisman, J. W., Bekunda, M., Cai, Z., Freney, J. R., and M. A. Sutton. 2008. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science. 320(5878): 889-892.
  28. Gambrell, R. P. 1978. Chemical and microbiological properties of anaerobic soils and sediments. Plant Life in Anaerobic Environment.
  29. Garnett, T., Appleby, M. C., Balmford, A., Bateman, I. J., Benton, T. G., Bloomer, P., and M. Herrero, 2013. Sustainable intensification in agriculture: premises and policies. Science. 341(6141): 33-34.
  30. Gregorich, E. G., Rochette, P., and VandenBygaart, A. and D. A. Angers. 2005. Greenhouse gas contributions of agricultural soils and potential mitigation practices in eastern Canada. Soil and Tillage Research. 83(1): 53-72.
  31. Gritsch, C., Egger, F., Zehetner, F., and S. Zechmeister‐ 2016. The effect of temperature and moisture on trace gas emissions from deciduous and coniferous leaf litter. Journal of Geophysical Research: Biogeosciences. 121(5): 1339-1351.
  32. GU, J., Loustau, D., Hénault, C., Rochette, P., Cellier, P., Nicoullaud, B., and G. Richard. 2014. Modeling nitrous oxide emissions from tile-drained winter wheat fields in Central France. Nutrient cycling in agroecosystems. 98(1): 27-40.
  33. Hanson, P. J., Edwards, N. T., Garten, C. T., and J. A. Andrews. 2000. Separating root and soil microbial contributions to soil respiration: a review of methods and observations. Biogeochemistry. 48(1): 115-146.
  34. Helgason, B. L., Janzen, H. H., Chantigny, M. H., Drury, C. F., Ellert, B. H., Gregorich, E. G., ... and C.Wagner-Riddle. 2005. toward improved coefficients for predicting direct N 2 O emissions from soil in Canadian agroecosystems. Nutrient Cycling in Agroecosystems. 72(1): 87-99.
  35. HoÈgberg, P., Nordgren, A., Buchmann, N., Taylor, A. F., Ekblad, A., HoÈgberg, M. N., and D. J. Read. 2001. Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature. 411(6839): 789-792.
  36. Hussain S, Peng S, Fahad S, Khaliq A, Hunag J, Ciu K, and L. Nie. 2015. Rice management interventions to mitigate greenhouse gas emission: a review. Environmental Science and Pollution Research. 22:3342–3360.
  37. 2007. The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, ed. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt et al. Cambridge and New York: Cambridge University Press.
  38. 2013. The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, ed. TF Stocker, D. Qin, and G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung et al. 3–29. Cambridge and New York: Cambridge University Press.
  39. 2014. Impacts, Adaptation and Vulnerability: Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, ed. V.R. Barros, C.B. Field, D.J. Dokken, M.D. Mastrandrea, K.J. Mach, T.E. Bilir et al. Cambridge and New York: Cambridge University Press.
  40. IPCC SAR WG3. 1996. Economic and social dimensions of climate change. Contribution of Working Group III to the second assessment report of the Intergovernmental Panel on Climate Change (Bruce JP, Lee H, Haites EF (eds)). Cambridge University Press.
  41. Kaliappan, S. B., Gunasekaran, Y., Smyrna, R., and R. S. Meena. 2019. Soil and Environmental Management. In Sustainable Management of Soil and Environment (pp. 1-27). Springer, Singapore.
  42. Lal, R. 2004. Climate change and food security soil carbon sequestration impacts. Science. 304: 1623.
  43. Launiainen, S., Rinne, J., Pumpanen, J., Kulmala, L., Kolari, P., Keronen, P., and T. Vesala. 2005. Eddy covariance measurements of CO. Boreal Environment Research. 10: 569-588.
  44. Le Mer, J., and P. Roger. 2001. Production, oxidation, emission and consumption of methane by soils: a review. European journal of soil biology. 37(1): 25-50.
  45. Le Quéré, C., Andrew, R., Canadell, J. G., Sitch, S., Korsbakken, J. I., Peters, G. P., and R. F. Keeling. 2016. Global carbon budget 2016.
  46. Li, C., Aber, J., Stange, F., Butterbach-Bahl, K., and H. Papen. 2000. A process-oriented model of N2O and NO emissions from forest soils: 1. Model development. Journal of Geophysical Research. 105: 4369–4384.
  47. Li, C., Frolking, S. and T.A. Frolking. 1992. A model of nitrous oxide evolution from soildriven by rainfall events: 1. model structure and sensitivity. Journal of Geophysical Research: Atmospheres. 97(D9), 9759-9776.
  48. Li, C., Frolking, S., and R. Harriss. 1994. Modeling carbon biogeochemistry in agricultural soils. Global biogeochemical cycles. 8(3): 237-254.
  49. Liu, Y., Wan, K. Y., Tao, Y., Li, Z. G., Zhang, G. S., Li, S. L., and F.Chen. 2013. Carbon dioxide flux from rice paddy soils in central China: effects of intermittent flooding and draining cycles. Plos one. 8(2): e56562.
  50. Ludwig, J., Meixner, F. X., Vogel, B., and J. Förstner. 2001. Soil-air exchange of nitric oxide: An overview of processes, environmental factors, and modeling studies. Biogeochemistry. 52(3): 225-257.
  51. Marland, G., McCarl, B. A., and U. Schneider. 2001. Soil carbon: policy and economics. Climatic Change. 51(1): 101-117.
  52. Meena, H., Meena, R. S., Lal, R., Yadav, G. S., Mitran, T., Layek, J., and T. Verma. 2018. Response of sowing dates and bio regulators on yield of clusterbean under current climate in alley cropping system in eastern UP, India. Legume Research-An International Journal. 41(4): 563-571.
  53. Meena, R. S., Gogoi, N., and S. Kumar. 2017. Alarming issues on agricultural crop production and environmental stresses.
  54. Meena, R. S., Vijayakumar, V., Yadav, G. S., and T. Mitran. 2018a. Response and interaction of Bradyrhizobium japonicum and arbuscular mycorrhizal fungi in the soybean rhizosphere. Plant Growth Regulation. 84(2): 207-223.
  55. Meier, E. A., and P. J. Thorburn. 2016. Long term sugarcane crop residue retention offers limited potential to reduce nitrogen fertilizer rates in Australian wet tropical environments. Frontiers in plant science. 7: 1017.
  56. Mitchell, J. P., Reicosky, D. C., Kueneman, E. A., Fisher, J., and D. Beck, 2019. Conservation agriculture systems. CAB Reviews. 14(001): 1-25.
  57. Mosier, A. R., Doran, J. W., and J. R. Freney. 2002. Managing soil denitrification. Journal of soil and water conservation. 57(6): 505-512.
  58. Myklebust, M. C., Hipps, L. E., and R. J. Ryel. 2008. Comparison of eddy covariance, chamber, and gradient methods of measuring soil CO2 efflux in an annual semi-arid grass, Bromus tectorum. Agricultural and forest meteorology. 148(11): 1894-1907.
  59. Nicolini, G., Castaldi, S., Fratini, G., and R. Valentini. 2013. A literature overview of micrometeorological CH4 and N2O flux measurements in terrestrial ecosystems. Atmospheric Environment. 81:311-319.
  60. Oertel, C., Matschullat, J., Zurba, K., Zimmermann, F., and S. Erasmi. 2016. Greenhouse gas emissions from soils—A review. Geochemistry. 76(3): 327-352.
  61. Ogle, S. M., Breidt, F. J., and K. Paustian. 2005. Agricultural management impacts on soil organic carbon storage under moist and dry climatic conditions of temperate and tropical regions. Biogeochemistry. 72(1): 87-121.
  62. Pandey, D. K., Malik, T., Dey, A., Singh, J., and R. M. Banik. 2014. Improved growth and colchicine concentration in gloriosa superba on mycorrhizal inoculation supplemented with phosphorus-fertilizer. African Journal of Traditional, Complementary and Alternative Medicines. 11(2): 439-446.
  63. Pathak, H. 2015. Greenhouse gas emission from Indian agriculture: trends, drivers and mitigation strategies. Proceedings of the Indian National Science Academy. 81(5): 1133-1149.
  64. Pattey, E., Edwards, G. C., Desjardins, R. L., Pennock, D. J., Smith, W., Grant, B., and J. I. MacPherson. 2007. Tools for quantifying N2O emissions from agroecosystems. Agricultural and Forest Meteorology. 142 (2-4): 103-119.
  65. Paustian, K., Lehmann, J., Ogle, S., Reay, D., Robertson, G. P., and P. Smith. 2016. Climate-smart soils. Nature, 532(7597):49-57.
  66. Pflugmacher, D., Krankina, O. N., Cohen, W. B., Friedl, M. A., Sulla-Menashe, D., Kennedy, R. E., ... and V. Elsakov. 2011. Comparison and assessment of coarse resolution land cover maps for Northern Eurasia. Remote Sensing of Environment. 115(12):3539-3553.
  67. Pretty, J. N., Morison, J. I., and R. E. Hine. 2003. Reducing food poverty by increasing agricultural sustainability in developing countries. Agriculture, ecosystems and environment. 95(1): 217-234.
  68. Raich, J. W., and A.Tufekciogul. 2000. Vegetation and soil respiration: correlations and controls. Biogeochemistry. 48(1): 71-90.
  69. Robertson, G. P., and P. M. Vitousek. 2009. Nitrogen in agriculture: balancing the cost of an essential resource. Annual review of environment and resources. 34: 97-125.
  70. Robertson, G. P. 1989. Nitrification and denitrification in humid tropical ecosystems: potential controls on nitrogen retention. Mineral nutrients in tropical forest and savanna ecosystems. 9: 55-69.
  71. Rochette, P., and H. H. Janzen. 2005. towards a revised coefficient for estimating N2 O emissions from legumes. Nutrient Cycling in Agroecosystems. 73(2-3): 171-179.
  72. Saari, A., Martikainen, P. J., Ferm, A., Ruuskanen, J., De Boer, W., Troelstra, S. R., and Laanbroek, H. J. 1997. Methane oxidation in soil profiles of Dutch and Finnish coniferous forests with different soil texture and atmospheric nitrogen deposition. Soil Biology and Biochemistry. 29(11-12): 1625-1632.
  73. Saunois, M., Jackson, R. B., Bousquet, P., Poulter, B., and J. G. Canadell. 2016. The growing role of methane in anthropogenic climate change. Environmental Research Letters. 11(12): 120207.
  74. Schaufler, G., Kitzler, B., Schindlbacher, A., Skiba, U., Sutton, M. A., and S. Zechmeister‐ 2010. Greenhouse gas emissions from European soils under different land use: effects of soil moisture and temperature. European Journal of Soil Science. 61(5): 683-696.
  75. Segers, R. 1998. Methane production and methane consumption: a review of processes underlying wetland methane fluxes. Biogeochemistry. 41(1): 23-51.
  76. Seneviratne, S., Nicholls, N., Easterling, D., Goodess, C., Kanae, S., Kossin, J., and M. Reichstein. 2012. Changes in climate extremes and their impacts on the natural physical environment.
  77. Šimek, M., Hynšt, J., and P. Šimek. 2014. Emissions of CH4, CO2, and N2O from soil at a cattle overwintering area as affected by available C and N. Applied soil ecology, 75, 52-62.
  78. Smith, P., Martino, D., Cai, Z., Gwary, D., Janzen, H., Kumar, P., and B. Scholes. 2007. Policy and technological constraints to implementation of greenhouse gas mitigation options in agriculture. Agriculture, Ecosystems and Environment. 118(1-4): 6-28.
  79. Smith, P., Clark, H., Dong, H., Elsiddig, E. A., Haberl, H., Harper, R., and N. H. Ravindranath. 2014. Agriculture, forestry and other land use (AFOLU).
  80. Smith, P., Martino, D., Cai, Z., Gwary, D., Janzen, H., Kumar, P., and B. Scholes. 2008. Greenhouse gas mitigation in agriculture. Philosophical transactions of the royal Society B: Biological Sciences. 363(1492): 789-813.
  81. Smith, P. 2012. Soils and climate change. Current opinion in environmental sustainability. 4(5): 539-544.
  82. Sofi, P. A., Baba, Z. A., Hamid, B., and R. S. Meena. 2018. Harnessing soil rhizobacteria for improving drought resilience in legumes. In Legumes for Soil Health and Sustainable Management (pp. 235-275). Springer, Singapore.
  83. Stehfest, E., and L. Bouwman. 2006. N2 O and NO emission from agricultural fields and soils under natural vegetation: summarizing available measurement data and modeling of global annual emissions. Nutrient Cycling in Agroecosystems. 74(3): 207-228.
  84. Syakila, A., and C. Kroeze. 2011. The global nitrous oxide budget revisited. Greenhouse gas measurement and management. 1(1): 17-26.
  85. Syswerda, S. P., Corbin, A. T., Mokma, D. L., Kravchenko, A. N., and G. P. Robertson. 2011. Agricultural management and soil carbon storage in surface vs. deep layers. Soil Science Society of America Journal. 75(1): 92-101.
  86. Van Kessel, C., Venterea, R., Six, J., Adviento‐Borbe, M. A., Linquist, B., and K. J. van Groenigen. 2013. Climate, duration, and N placement determine N2O emissions in reduced tillage systems: a meta‐Global change biology. 19(1): 33-44.
  87. Wassmann, R., Papen, H., and H. Rennenberg. 1993. Methane emission from rice paddies and possible mitigation strategies. Chemosphere. 26(1-4): 201-217.
  88. West, T. O., and W. M. Post. 2002. Soil organic carbon sequestration rates by tillage and crop rotation: a global data analysis. Soil Science Society of America Journal. 66(6): 1930-1946.
  89. Yadav, G. S., Babu, S., Meena, R. S., Debnath, C., Saha, P. O. U. L. A. M. I., Debbaram, C., and M. Datta. 2017. Effects of godawariphosgold and single supper phosphate on groundnut (Arachis hypogaea) productivity, phosphorus uptake, phosphorus use efficiency and economics. Indian Journal of Agricultural Sciences. 87(9): 1165-1169.
  90. Yadav, G. S., Das, A., Lal, R., Babu, S., Meena, R. S., Saha, P., and M. Datta. 2018. Energy budget and carbon footprint in a no-till and mulch based rice–mustard cropping system. Journal of cleaner production. 19:144-157.
  91. Zechmeister-Boltenstern, S., Díaz-Pinés, E., Spann, C., Hofmann, K., Schnecker, J., and S. Reinsch. 2018. Soil—The Hidden Part of Climate: Microbial Processes Regulating Soil–Atmosphere Exchange of Greenhouse Gases. In Soil and Climate (pp. 11-60). CRC Press.