نوع مقاله : فنی ترویجی

نویسندگان

1 دانشیار پژوهش، بخش تحقیقات خاک و آب، مرکز تحقیقات، آموزش کشاورزی و منابع طبیعی استان اصفهان، سازمان تحقیقات، آموزش و ترویج کشاورزی، اصفهان، ایران.

2 استادیار پژوهش، موسسه تحقیقات خاک و آب، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران.

چکیده

با ارائه مفاهیم و مؤلفه‌های پایداری زیست‌بوم طبیعی، پتانسیل زیست‌بوم خاک برای دستیابی به پایداری طبیعت، سعی شده نقش علم ارزیابی در رسیدن به این اهداف تعریف شود. در این مقاله با تشریح مفاهیم و اجزاء پایداری زیست‌بوم، کارکرد زیست‌بومی خاک و ارائه مسیر راه برای حصول به پایداری محیط‌زیست در تبیین جایگاه و نقش ارزیابی اراضی در این مسیر تشریح شود. اگرچه علم ارزیابی پایه و اساس فرآیندهای تصمیم‌گیری و سیاست‌گذاری است، اما هنوز به‌درستی و روشمند در جهت بهینه‌سازی مدیریت کلی و همه‌جانبه مورد استفاده قرار گرفته نشده است. در حقیقت، ارزیابی محیطی با هر تعریف و یا با هر روش اجرائی آن، حلقه مفقوده‌ای فرآیندهای تصمیم‌گیری و سیاست‌گذاری در نظام مدیریت پایدار است و از آنجائی که علم ارزیابی ارتباط ‌دهنده تمام علوم محیط زیستی، اقتصادی و صنعتی است، باید بیشتر مورد توجه قرار گیرد. ارزیابی اراضی، با تعیین وضعیت خصوصیات ترکیبی خاک از قبیل کیفیت، انحطاط، انعطاف‌پذیری، امنیت، سلامت، بهره‌وری، رفتار و کارایی همراه با ارزیابی خصوصیات عملکردی و خدمات زیست‌بومی خاک‌ها، نقش آن‌ها را در مسیر مدیریت جامع زمین روشن می‌نماید و امکان ارتقاء کیفیت زندگی در کره خاکی را مهیا و پایدار می نماید.

کلیدواژه‌ها

عنوان مقاله [English]

Land Assessment: The Prerequisite to Sustainable Development

نویسندگان [English]

  • Norair Toomanian 1
  • Ali Zeinadini Meimand 2

1 Associate professor of Soil Science, Soil and Water Research Department, Isfahan Agricultural and Natural Resources Research and Education Center, AREEO, Isfahan, Iran.

2 Assistant professor, Soil and Water Research Institute, Agricultural and Natural Resources Research and Education Organization, AREEO, Tehran, Iran.

چکیده [English]

With the new concepts and goals defined under global ecosystem sustainability and the potential contributions of soil ecosystems to the sustainability of nature and natural resources, efforts have been made to redefine the role of the science of evaluation in achieving the goals thereby defined. Introducing the components of a sustainable ecosystem, the present study strives to explore the functions of soil ecosystem and to define the role of land assessment in developing a road map toward environmental sustainability. Although the science of evaluation serves as the foundation for decision and policy making processes, it has not yet been properly and systematically exploited to achieve optimally integrated resource management. Environmental assessment, no matter how it is employed, is still the missing link in decision and policy making processes as part of sustainable resource management. It, indeed, requires due consideration in all such processes as it plays a pivotal role in bridging all environmental, economic, and engineering disciplines. Land evaluation is a disciple that characterizes soil composition in terms of its quality, degradation, flexibility, safety, health, productivity, behavior, and efficiency and, in conjunction with an evaluation of soil ecosystem functions, defines the roles each of the soil characteristics plays in integrated land management.

کلیدواژه‌ها [English]

  • Land evaluation
  • Missing link
  • Sustainable soil management
  1. ایوبی ش.، ا. جلالیان، 1389. ارزیابی اراضی (کاربری‌های کشاورزی و منابع طبیعی). دانشگاه صنعتی، چاپ دوم.
  2. حسنی م. و ح. مرادی ،. بررسی کارایی روش­های سنتی و مدرن در ارزیابی اثرات زیست محیطی. دومین کنفرانس برنامه ریزی مدیریت محیط زیست.
  3. سعیدی م. ع. ﻛﺮﺑﺎﺳﻲ، ت. سهراب، ر. ﺻﻤﺪی، 1384.ﻣﺪﻳﺮﻳﺖ زﻳﺴﺖ­ﻣﺤﻴﻄﻲ ﻧﻴﺮوﮔﺎهﻫﺎ. نشر وزارت نیرو-ﺳﺎزﻣﺎن ﺑﻬﺮه­وری اﻧﺮژی اﻳﺮان (ﺳﺎﺑﺎ).
  4. هرچگانی ح. و گ. بنی طالبی، 1392. اﺛﺮ ﺑﻴﺴﺖ و سه ﺳﺎل آﺑﻴﺎری ﺳﻄﺤﻲ ﺑﺎ ﭘﺴﺎب ﺷﻬﺮی ﺑﺮ اﻧﺒﺎﺷﺖ ﺑﻌﻀﻲ ﻓﻠﺰات ﺳﻨﮕﻴﻦ در ﺧﺎک، اﻧﺘﻘﺎل ﺑﻪ داﻧﻪ­های ﮔﻨﺪم و ذرت و ﺧﻄﺮات ﺑﻬﺪاﺷﺘﻲ ﻣﺮﺗﺒﻂ. ﻧﺸﺮﻳﻪ آب و خاک دانشگاه فردوسی مشهد (ﻋﻠﻮم و ﺻﻨﺎﻳﻊ کشاورزی)،27ﺟﻠﺪ 3ﺷﻤﺎره صفحات 570-580.
  5. Adhikari K., A. E. Hartemink, 2016. Linking soils to ecosystem services- A global review. Geoderma 262, pp 101-111.
  6. Alghobar M. A., S. Suresha, 2016. Evaluation of metal accumulation in soil andtomatoes irrigated with sewage water from Mysorecity, Karnataka, India. Journal of the Saudi Society of Agricultural Sciences, King Saud University. DOI:10.1016/j.jssas.2015.02.002.
  7. AL-Jaboobi Muamar, Abdelmajid Zouahri, M’hamed Tijane, Abdellah El Housni, Zakaria Mennane, Hasna Yachou and Mohammed Bouksaim, 2014. Evaluation of heavy metals pollution in groundwater, soil and some vegetables irrigated with wastewater in the Skhirat region “Morocco” J. Mater. Environ. Sci. 5 (3) pp 961-966.
  8. Balkhair K. S., M. A. Ashraf, 2016. Field accumulation risks of heavy metals in soil and vegetable crop irrigated with sewage water in western region of Saudi Arabia. Saudi Journal of Biological Sciences, 23, S32–S44.
  9. Bani Neameh J., 2003. Land evaluation for Land Use Planning with especial attention to sustainable fodder production in the Rouzeh Chai catchment of Orumiyeh area – Iran. MSc thesis submitted to the International Institute for Geo-information Science and Earth Observation.Enschede, the Netherlands.
  10. Blum W.E.H. (1993) Soil Protection Concept of the Council of Europeand Integrated Soil Research, in: Eijsackers H.J.P., Hamer T. (Eds.), Integrated Soil and Sediment Research: A basis for ProperProtection, Soil and Environment, Dordrecht: Kluwer AcademicPublishers, Vol. 1, pp. 37–47.
  11. Bouma J, Kwakernaak C, Bonfante A, Stoorvogel JJ, Dekker LW (2015). Soil science input intransdisciplinary projects in the Netherlands and Italy. Geoderma Reg 5:96–105, http://dx.doi. org/10.1016/j.geodrs.2015.04.002.
  12. Bouma J., 2019. Soil Security in Sustainable Development. Soil Syst., 3, 5; doi: 10.3390/soils stems 3010005.
  13. Bouma J., M.K. van Ittersum, J.J. Stoorvogel, N.H. Batjes, P. Droogers, and M.M. Pulleman, 2016. Soil Capability: Exploring the Functional Potentials of Soils, In: D.J. Field et al. (eds.), Global Soil Security, Progress in Soil Science, DOI 10.1007/978-3-319-43394-3_3.
  14. Bouma, J., 2015. Reaching out from the soil-box in pursuit of soil security. Soil Sci. PlantNutr. 1–10.
  15. Bouma, J., Van Ittersum, M.K., Stoorvogel, J.J., Batjes, N.H., Droogers, P., Pulleman, M.M., 2017. Soil capability: exploring the functional potentials of soils. In: Field, D.J.e.a. (Ed.), Global Soil Security. Springer International Publishing, Switzerland, pp. 27–44.
  16. Bünemann E. K., G. Bongiorno, Z. Bai, R. E. Creamer, Gerlind De Deyn, Ron de Goede, Luuk Fleskens, Violette Geissen, Thom W. Kuyper, Paul Mäder, Mirjam Pulleman, Wijnand Sukkel, Jan Willem van Groenigen, Lijbert Brussaard, 2018. Soil quality – A critical review. Soil Biology and Biochemistry, 120, 105-125 pp.
  17. Carter, M.R., Gregorich, E.G., Anderson, D.W., Doran, J.W., Janzen, H.H., Pierce, F.J., 1997. Concepts of soil quality and their significance. In: Gregorich, E.G., Carter, M.R. (Eds.), Developments in Soil Science. Elsevier, pp. 1–19.
  18. Chiroma T. M1., Ebewele R. O2. And Hymore F.K, 2014, Comparative Assessement of Heavy Metal Levels In Soil, Vegetables and Urban Grey Waste Water Used For Irrigation in Yola and Kano. International Refereed Journal of Engineering and Science (IRJES). Volume 3, Issue 2, PP.01-09.
  19. Costanza, R., d'Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K., Naeem, S., O'Neill, R.V., Paruelo, J., Raskin, R.G., Sutton, P., van den Belt, M., 1997. The value of the world's ecosystem services and natural capital. Nature387 (6630), 253–260.
  20. De Groot, R.S., Wilson, M.A., Boumans, R.M.J., 2002. A typology for the classification, descriptionand valuation of ecosystem functions, goods and services. Ecol. Econ. 41(3), 393–408.
  21. De la Rosa D. and C.A. van Diepen, 2002. Qualitative andQuantitative Land Evaluation, in 1.5. Land Use and Land Cover, in Encyclopedia ofLife Support System (EOLSS-UNESCO), Eolss Publishers. Oxford, UK.[http://www.eolss.net]
  22. Delgado, F., Lopez, R., 1998. Evaluation of soil development impact on the productivity of Venezuelan Soils. Advances in GeoEcology 31: 133-142.
  23. Dengiz O., M. Usul, 2018. Multi-criteria approach with linear combination technique and analytical hierarchy process in land evaluation studies. Eurasian J Soil Sci., 7 (1) 20 – 29.
  24. Dominati, E., Mackay, A., Green, S., Patterson, M., 2014. A soil change-based methodology for the quantification and valuation of ecosystem services from agro-ecosystems: a case study of pastoral agriculture in New Zealand. Ecol. Econ. 100, 119–129.
  25. Dumanski, J., Pieri, C., 2000. Land quality indicators: research plan. Agriculture, Ecosystems & Environment 81, 93–102.
  26. Eliasson A., 2007. Review of Land Evaluation Methods for Quantifying Natural Constraints to Agriculture The Institute for Environment and Sustainability. Joint Research Centre, Ispra (Italy).
  27. Fagbote Emmanuel Olubunmi, Olanipekun Edward Olorunsola, 2010. Evaluation of the Status of Heavy Metal Pollution of Sediment of Agbabu Bitumen Deposit Area, Nigeria. European Journal of Scientific Research No.3, pp.373-382.
  28. FAO (1976) A framework for land evaluation. Soils bulletin 32. Food and Agriculture of the UnitedNations, Rome. ISBN 92 5 100111 1. pp. 72.
  29. FAO 2017. Voluntary Guidelines for Sustainable Soil ManagementFood and Agriculture Organization of the United NationsRome, Italy.
  30. FAO and ITPS, 2015. Status of the World’s Soil Resources (SWSR) – Main Report. Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils, Rome, Italy.
  31. FAO and ITPS, 2017. Global assessment of the impact of plant protection products on soil functions and soil ecosystems, Rome, FAO. 40 pp.
  32. FAO, 2015. Revised World Soil Charter. Food and Agriculture Organization of the United Nations. Viale delle Terme di Caracalla, 00153 Rome, Italy.
  33. Greiner L., A. Keller, A. Grêt-Regamey, A. Papritz, 2017. Soil function assessment: review of methods for quantifying the contributions of soils to ecosystem services. Land Use Policy, 69: 224-237 pp.
  34. Harrison, R., Strahm, B., Yi, X., 2010. Soil education and public awareness. In: Verheye, W.H. (Ed.), Soils, Plant Growth and Crop Production. Vol. III. Encyclopaedia of LifeSupport Systems (EOLSS). EOLSS publishers/UNESCO, UK, pp. 196–218.
  35. Hewitt, A., Dominati, E., Webb, T., Cuthill, T., 2015. Soil natural capital quantification bythe stock adequacy method. Geoderma 241–242, 107–114.
  36. Iwegbue C.M.A., F.I. Bassey, G.O. Tesi, G.E Nwajei and A.I. Tsafe, 2013. Assessment of Heavy Metal Contamination in Soils around Cassava Processing Mills in SubUrban Areas of Delta State, Southern Nigeria. Nigerian Journal of Basic and Applied Science, 21(2): 96-104pp.
  37. Jan Beek K., K. de Bie and P. Driessen, 1997. Land Evaluation for Sustainable Land Management. International Institute for Aerospace Survey and Earth Sciences (ITC) P.O.Box 6, 7500 AA Enschede, the Netherlands.
  38. Jintao L., Cuicui Chen, Xiuli Song, Yulan Han, Zhenhai Liang, 2011. Assessment of Heavy Metal Pollution in Soil and Plants from Dunhua Sewage Irrigation Area. Int. J. Electrochem. Sci., 6 pp 5314 – 5324.
  39. Jón Örvar Jónsson J. O., B. Davidsdottir, N. P. Nikolaidis, 2016. Valuation of Soil Ecosystem Services. Chapter in Advances in Agronomy · DOI: 10.1016/bs.agron. 2016.10.011.
  40. Karlen D.L., Mausbach M.J., Doran J.W., Cline R.G., Harris R.F., Schuman G.E. (1997). Soil quality: a concept, definition and frameworkfor evaluation, Soil Sci. Soc. Am. J. 61, 4–10.
  41. Karlen, D.L., Ditzler, C.A., Andrews, S.S., 2003. Soil quality: why and how? Geoderma 114, 145–156. http://dx.doi.org/10.1016/S0016-7061 (03)00039-9.
  42. Keesstra, S. D., Bouma, J., Wallinga, J., Tittonell, P., Smith, P., Cerdà, A., Montanarella, L., Quinton, J. N., Pachepsky, Y., van der Putten, W. H., Bardgett, R. D., Moolenaar, S., Mol, G., Jansen, B., and Fresco, L. O., 2016. The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals, SOIL, 2, 111-128, https://doi.org/10.5194/soil-2-111-2016.
  43. Klingebiel, A.A., Montgomery, P.H., 1966. Land Capability Classification. United States Department of Agriculture. Handbook No. 210, Washington, USA.
  44. Ludwig M., P. Wilmes, S. Schrader, 2018. Measuring soil sustainability via soil resilience. Science of the Total Environment, 626: 1484- 1493.
  45. McBratney, A.B., Field, D.J., Koch, A., 2014. The dimensions of soil security. Geoderma 213,203–213.
  46. McRae, S.G., Burnham, C.P., 1981. Land Evaluation. Clarendon Press, Oxford, UK. 239 p.
  47. MEA, 2005.MillenniumEcosystemAssessment: Ecosystems and HumanWell-being 5. IslandPress Washington, DC.
  48. Obade, V., Lal, R., 2016. Towards a standard technique for soil quality assessment. Geoderma 265, 96–102. http://dx.doi.org/10.1016/j.geoderma.2015.11.023.
  49. Robinson, D.A., Emmett, B.A., Reynolds, B., Rowe, E.C., Spurgeon, D., Keith, A.M., Lebron, I., Hockley, N., 2012. Soil natural capital and ecosystem service delivery in a world ofglobal soil change. In: Hester, R.E., Harrison, R.M. (Eds.), Soils and Food Security. Issuesin Environmental Science and Technology Series, pp. 41–68.
  50. Saaty, T, 1980. The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation. McGraw Hill International, New York, USA. 287p.
  51. Smyth, A.J. and Dumanski, J. 1993. FESLM: An international framework for evaluating sustainable land management. A discussion paper. World Soil Resources Report 73. Food & Agriculture Organization, Rome, Italy. 74 pp.
  52. Son N. T., T. V. Hieu, R. P. Shrestha, N. T. Trieu, N. V. Kien, V. T. Anh, P. A. Dung, H. N. Duc, N. M. Du, N. X. Niem, 2008. Integrated land-use planning for sustainable agriculture and natural resources management in the Vietnamese Mekong delta. AEJ (2008) 6:307–324. DOI 10.1007/s10308-008-0175-1.
  53. Storie, R.E., 1938. An index for rating the agricultural valuve of soils. Bulletin 556. University of California, College of Agriculture, Agricultural Experiment Station Berkeley, California, USA. 46p.
  54. Sys, C., Van Ranst, E., Debaveye, J., 1991. Land evaluation part I Principles in land evaluation and crop production calculations. General administration for development cooperation (GADC), Agricultural Publications No. 7, Brussels, Belgium. Pp.40-80.
  55. Szabolcs, I., 1994. The concept of soil resilience. In: Greenland, D., Szabolcs, I. (Eds.), SoilResilience and Sustainable Land Use. CAB International, Wallingford, UK, pp. 33–39.
  56. Thomas F Doring T. F., A. Vieweger, M. Pautasso, M. Vaarst, M. R Finckh and M. S. Wolfe. 2014. Resilience as a universal criterion of health. Published online in Wiley Online Library, DOI 10.1002/jsfa.6539.
  57. UNEP (2016) Unlocking the Sustainable Potential of Land Resources: Evaluation Systems, Strategies and Tools. A Report of the Working Group on Land and Soils of the International Resource Panel. ISBN: 978-92-807-3578-9.
  58. UNEP, 2016. Unlocking the Sustainable Potential of LandResources: Evaluation Systems, Strategies and Tools.A Report of the Working Group on Land and Soils of theInternational Resource Panel. Herrick, J.E., O. Arnalds,B. Bestelmeyer, S. Bringezu, G. Han, M.V. Johnson, D. Kimiti,Yihe Lu, L. Montanarella, W. Pengue, G. Toth, J. Tukahirwa,M. Velayutham, L. Zhang. ISBN: 978-92-807-3578-9.
  59. United Nations (UN), 2015. Resolution 70/1. Transforming our world: the 2030 Agenda for Sustainable Development.
  60. Vlad V., 1996. Proposal for an integrated expert system for land evaluation in Romania. "Stiinta Solului / Soil Science", Bucharest, vol.XXX, no.2, p.77-91.
  61. Wienhold, B.J., Andrews, S.S., Karlen, D.L., 2004. Soil quality: a review of the science and experiences in the USA. Environ. Geochem. Health 26, 89–95.
  62. Young, I., Crawford, J., 2004. Interactions and self-organisation in the soil-microbe complex.Science 304, 1634–1637.
  63. Ziadat Z., S. Bunning and E. De Pauw, 2017. Land resource planning for sustainable land management. Land and Water Division Working Paper No. 14, FAO publication, ISBN 978-92-5-109896-7.