نوع مقاله : فنی ترویجی

نویسندگان

1 دکتری خاکشناسی و کارشناس خاک سازمان جهاد کشاورزی استان فارس

2 عضو هیات علمی مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی فارس و مدیر آب و خاک سازمان جهاد کشاورزی

3 دانشیار گروه علوم خاک دانشگاه ولی عصر (عج) رفسنجان

چکیده

زمین­نماها یکی از عوارض طبیعی سطح زمین هستند و به‌عنوان یک ویژگی خاص مورفولوژیکی در سطح­ زمین محسوب می‌شود که از مقیاس­های بزرگ (مثل دشت­ها و کوه­ها) تا مقیاس‏های کوچک­تر (مثل تپه‏های کوچک) را شامل می‏شود. یکی از کاربردهای زمین آمار تعیین مرز واحدهای فیزیوگرافی بوده که در این پژوهش با استفاده از تخمین‌گر کریجینگ معمولی منطقه‌ی هرمزآباد رفسنجان مورد مطالعه قرارگرفته است. به­ همین منظور، موقعیت 77 نقطه‌ی مشاهداتی در قالب یک الگوی نمونه‌برداری شبکه­‌ای منظم با فاصله­ی 500 متر مشخص و از عمق­های صفر تا 40، 40 تا 80 و 80 تا 120 سانتی­متری خاک، نمونه‏برداری انجام شد. نتایج پژوهش حاضر نشان داد که مشابه با دیگر مطالعات و بر اساس شاخص درصد کارایی مدل، کریجینگ معمولی به‏عنوان تخمین‏گری مناسب در پهنه­بندی ویژگی‌ها در منطقه‏ی مورد مطالعه بوده است. بر اساس نتایج حاصل از مطالعه زمین آماری، فاصله‏ی نمونه‏برداری 1800 متر به عنوان معیاری برای مطالعات آینده در این منطقه بدست آمد. همچنین مقایسه­ی نقشه‌های کریجینگ و توپوگرافی منطقه، حاکی از آن بود که تخمین‏گر کریجینگ، وجود واحدهای فیزیوگرافی در زمین‏نمای منطقه‌ی مطالعاتی را بهتر نشان می‌دهد. به ‏‏عبارت دیگر، به­واسطه­ی وجود روند بلند دامنه در فواصل بیش­تر از حدود 1800 متری در تغییر نمای خصوصیات خاکی بررسی شده کریجینگ مرز موجود میان واحدهای فیزیوگرافی را با دقت بالاتری نسبت به ‏نقشه‏های توپوگرافی جدا می­نماید. از این رو، پیشنهاد می‏شود در مطالعات خاکشناسی تفصیلی دقیق و تفصیلی که به نقشه‏ها و اطلاعات دقیق‏تری نیاز می‌باشد از زمین‌آمار استفاده شود.

کلیدواژه‌ها

عنوان مقاله [English]

Landscape Investigations Using the Kriging Estimator (A Case Study of Hormozabad in Rafsanjan, Kerman Province)

نویسندگان [English]

  • Alireza Owji 1
  • Amir Eslami 2
  • Isa Esfandiarpour Boroujen 3

1 PhD in soil science and soil and water expert, Fars Agricultural Organization.

2 Fars agriculture and natural resources research and education center, and director soil organization of Fars soil and water administer

3 Associate professor of soil Science department, Vali-e-Asr University of Rafsanjan

چکیده [English]

As natural land features, landscapes ranging in size from large plains and mountains to small hills are regarded as morphological formations characteristic of the earth's surface. The objective of the present study was to determine the physiographic unit boundaries in Hormozabad, Rafsanjan, using the ordinary kriging estimator. For this purpose, 77 observation points at distances of 500 m from each other were selected over a regular sampling grid and soil samples were collected from depths of 0–40, 40–80, and 80–120 cm at the specified locations. Similar to the findings reported elsewhere and based on model efficiency estimates, the results obtained showed that ordinary kriging served as a good estimator in zoning the properties of the study area. Additionally, geostatistical results indicated that a sampling distance of 1800 m could be used as a criterion for future surveys in areas similar to the present study one. Comparison of the kriging and topographic maps of the area demonstrated that the kriging estimator used was superior to topographic maps in representing physiographic units. This was evidenced by the more accurate unit boundaries detected by the estimator despite the high variations in soil properties depicted in the respective variograms for intervals above 1800 meters. It is, therefore, recommended that modern techniques such as geostatistics should be employed for detailed soil studies as required for preparing more adequately detained maps with precise data.

کلیدواژه‌ها [English]

  • Spatial variations
  • Landscape
  • Soil survey
  • Physiographic unit
  1. سکوتی اسکوئی، ر، مهدیان، م ح، محمودی، ش، قهرمانی، ا (1386). مقایسه­ی کارایی برخی روش­های زمین­آماری برای پیش‏بینی پراکنش مکانی شوری خاک (مطالعه­ی موردی دشت ارومیه). مجله­ی پژوهش و سازندگی، (شماره­ی 74)، 90-94.
  2. حسنی پاک، ع (1377). زمین­آمار (ژئواستاتیستیک). انتشارات دانشگاه تهران.
  3. محمدی، ج (1377). مطالعه­ی تغییرات مکانی شوری در منطقه­ی رامهرمز (خوزستان) با استفاده از نظریه­ی ژئواستاتیک (کریجینگ). مجله­ی علوم و فنون کشاورزی و منابع طبیعی، جلد دوم، (شماره­ی 4)، 49-64.
  4. محمدزمانی، س، ایوبی، ش، خرمالی، ف (1386). بررسی تغییرات مکانی خصوصیات خاک و عملکرد گندم در بخشی از اراضی زراعی سرخنکلاته­ی استان گلستان. مجله­ی علوم و فنون کشاورزی و منابع طبیعی، سال یازدهم، (شماره­ی 40)، 79-91.
  5. Alemi, M.H., Shahriari, M.R., and Nielsen, D.R. 1988. Kriging and cokriging of soil properties. Soil Technology, 1: 117-132.
  6. Badia, D., Martia, C., Aznar, J.A., and Leon, J. 2013. Influence of slope and parent rock on soil genesis and classification in semiarid mountainous environment. Geoderma, 193: 13-21.
  7. Bishop, M.A. 2009. A generic classification for the morphological and spatial complexity of volcanic (and other) landforms. Geomorphology, 11: 104 -109.
  8. Blaszczynski, J.S. 1997. Landform characterization with geographic information systems. Photogrammetric engineering and remote sensing, 63(2): 183-191.
  9. Brevik, E.C., Cerda, A., Mataix-Solera, J., Pereg, L., Quinton, J.N., Six, J., and Van Oost, K. 2015. The interdisciplinary nature of soil. Soil Journal. 1: 117–129.
  10. Bridge, S., Watt, W.R., Lucking, G., and Naylor, B. 2000. Landscape Analysis for Forest Management Planning in Boreal Northeastern Ontario. Developed and produced by Northeast Science and Technology, TR-040.
  11. Bugress, T.M., and Webster, R. 1980. Optimal interpolation and isarithmic mapping of soil properties. I- The Semi-variogram and Punctual Kriging. Soil Science Journal, 31: 315-331.
  12. Burrough, P.A. 1993. Soil variability: a late 20th century view. Soils and Fertilizers, 56: 529-562.
  13. Cambardella, C.A., Moorman, T.B., Parkin, T.B., Karlen, D.L., Turco, R.F., and Konopka, A.E. 1994. Field scale variability of soil properties in Central Iowa soils. Soil Sci Soc Am J 58:1501–
  14. Cobo, J.G., Dercon, G., Yekeye, T., Chapungu, L., Kadzere, C., Murwira, A., Delve, R., and Cadisch, G. 2010. Integration of mid-infrared spectroscopy and geostatistics in the assessment of soil spatial variability at landscape level. Geoderma, 158: 398–411.
  15. Elnaggar, A.A. 2007. Development of predictive mapping techniques for soil survey and salinity mapping. (Doctoral dissertation, Oregon State University, Corvallis, Oregon). Retrieved from http://hdl.handle.net/ 148, 1957- 5754.
  16. Fanning, D.S., and Fanning, M.B. 1992. Soil morphology, genesis and classification. John Willy and Sons. USA.
  17. Gee, G.W., and Bauder, J.W. 1986. Particle Size Analysis. P. 388-409. In: A. Klute (Ed.), Methods of Soil Analysis. Part 1. 2nd ed., Agron. Monger, No. 9. ASA and SSSA. Madison, WI.
  18. Gerrard, A.J. 1992. Soil Geomorphology: An Integration of Pedology and Geomorphology. Chapman and Hall, New York, USA.
  19. Godwin, R., and Miller, P.C.H. 2003. A review of the technologies for mapping within-field variability. Biosystem Engineering, 84: 393-407.
  20. Goovaerts, P. 1997. Geostatistics for Natural Resources Evaluation. Oxford University Press, New York, USA.
  21. Greenwood, D.J., Neeteson, J.J., and Draycott, A. 1985. Response of potatoes to N fertilizer: dynamic model. Plant and Soil, 85: 185-203.
  22. Hartmann, A., Weiler, M., and Blume, T. 2020. The impact of landscape evolution on soil physics: Evolution of soil physical and hydraulic properties along two chronosequences of proglacial moraines. Earth Syst. Sci. Data, 12: 3189–3204.
  23. Hosseinifard, S.J., Khademi, H., and Kalbasi, M. 2010. Different forms of soil potassium as affected by the age of pistachio (Pistachio Vera L.) trees in Rafsanjan, Iran. Geoderma, 155: 289-297.
  24. Isaaks, E.H., and Srivastava, R.M. 1989. An Introduction to Applied Geostatistics. Oxford Univrsity Press, New York.
  25. Khormali, F., and Abtahi, A. 2003. Origin and distribution of clay minerals in calcareous arid and semi-arid soils of Fars Province, Southern Iran. Clay minerals, 38: 511-527.
  26. Kravchenko, A.N. 2003. Influence of spatial structure on accuracy of interpolation methods. Soil Science Society of America Journal, 67: 1564-1571.
  27. Li, J., and Heap, A.D. 2008. A Review of Spatial Interpolation Methods for Environmental Scientists. Geoscience publication, Australia.
  28. Jenny, H. 1941. Factors of Soil Formation: A System of Quantitative Pedology. McGraw-Hill, New York. 281. P.
  29. Markus, E., and Merkli, C. 2007. Weathering, mineralogical evolution and soil organic matter along a Holocene soil toposequence developed on carbonate-rich materials. Geomorphology 97: 675-696.
  30. Mohammadi, J. 2000. Evaluation and mapping of soil salinity hazard in Ramhormoz area (Khuzestan) using disjunctive kriging. Journal of Agricultural Research, 25(6): 45-57.
  31. Owji, A., Esfandiarpour-Boroujeni, I., Kamali, A., Hosseinifard, S. J. and Bagheri-Bodaghabadi, M. 2013. The effects of hydrometer reading times on the spatial variability of soil textures in southeast Iran. Arabian Journal of Geosciences. Springer Link, 7:1491–1499.
  32. Pike, R.J. 1999. A bibliography of geomorphometry, the Quantitative Representation of Topography Supplement 3 (Open-File Report 99-140), US. Geological Survey.
  33. Quine, T.A. and Zhang, Y. 2002. An investigation of spatial variation in soil erosion, soil properties and crop production within an agricultural field in Devon, UK. Journal of soil and Water Conservation, 57: 50-60.
  34. Sauer, T.J., Cambardella, C.A., and Meek, D.W. 2006. Spatial variation of soil properties relating to vegetation changes. Plant and Soil, 280: 1-5.
  35. Shaetzl, R.J., and Anderson, S. 2005. Soils: Genesis and Geomorphology. Cambridge University Press, New York, USA.
  36. Soil Survey Staff. 2014b. Keys to Soil Taxonomy. 12th Edition. Washington, DC: US Department of Agriculture–Natural Resources Conservation Service, 372 pp.
  37. Soil Survey Division Staff. 1993. Soil Survey Manual. Keys to Soil Taxonomy. 12th Edition Soil Conservation Service. U.S. Department of Agriculture Handbook 18.
  38. Sun, S., Zhang, G., He, T., Song, S., Chu, X. (2021). Effects of Landscape Positions and Landscape Types on Soil Properties and Chlorophyll Content of Citrus in a Sloping Orchard in the Three Gorges Reservoir Area, China. Sustainability. 13, 4288.
  39. Tagil, S., and Jenness, J. 2008. GIS-based automated landform classification and topographic, landcover and geologic attributes of landforms around the Yazoren Polje, Turkey. Journal of Applied Sciences, 8(6): 910-921.
  40. Timmis, K., and Ramos, J, L. 2021. The soil crisis: the need to treat as a global health problem and the pivotal role of microbes in prophylaxis and therapy. Microbial Biotechnology. 14(3): 769–797.
  41. Toomanian, N., Jalalian, A., and Karimian Eghbal, M. 2001. Genesis of gypsum enriched soils in north-west Isfahan, Iran. Geoderma, 99:199-224.
  42. Vicente-Serrano, S.M., Saz-Sánchez, M.A., and Cuadrat, J.M. 2003. Comparative analysis of interpolation methods in the middle Ebro Valley (Spain): application to annual precipitation and temperature. Climate Research, 24: 161-180.
  43. Webster, R., and Oliver, M.A. 2001. Geostatistics for Environmental Scientists. John Wiley and Sons Ltd., Chichester, UK.
  44. Wei, J.B., Xiao, D.N., Zeng, H., and Fu, Y.K. 2008. Spatial variability of soil properties in relation to land use and topography in a typical small watershed of the black soil region, northeastern China. Environmental geology, 53: 1663-1672.
  45. Zinck, J.A. 1989. Physiography and Soils. Lecture notes for soil students. Soil Science Division, Soil survey courses subject matter: K6 ITC, Enschede, The Netherlands.