نوع مقاله : پژوهشی

نویسندگان

1 کارشناس ارشد حاصلخیزی و زیست‌فناوری خاک، گروه علوم و مهندسی خاک، دانشگاه رازی، کرمانشاه، ایران.

2 دانشیار گروه علوم و مهندسی خاک، دانشگاه رازی، کرمانشاه، ایران.

3 دکتری علوم خاک، گروه علوم خاک، دانشگاه زنجان، ایران

4 استادیار گروه مهندسی تولید و ژنتیک گیاهی، دانشگاه رازی، کرمانشاه، ایران.

چکیده

خاک‌ورزی‌ می‌تواند ‌از طریق ایجاد تغییر در ‌ویژگی‌های خاک، به پایداری کشاورزی و بهبود کیفیت خاک کمک‌ نماید. یکی از ابزارهای مفید برای بررسی وضعیت مدیریت خاک در سامانه‌های مختلف ‌خاک‌ورزی، ارزیابی کیفیت خاک با استفاده از ‌شاخص‌های کمی است. این مطالعه به‌منظور بررسی اثرات‌ سامانه‌های ‌مختلف ‌خاک‌ورزی بر‌ برخی ‌از ‌شاخص‌های ‌کیفیت‌ خاک‌ در یک مزرعه تحقیقاتی در استان کرمانشاه انجام ‌گرفت.‌ آزمایش‌ به‌صورت ‌فاکتوریل ‌در ‌قالب‌ طرح‌ بلوک‌های‌ کامل‌ تصادفی‌ در دو ‌عمق ‌‌صفرتا 25 و 25 تا 50 سانتی‌متری و در سه روش ‌مختلف بی خاک‌ورزی، خاک‌ورزی کاهشی و خاک‌ورزی مرسوم انجام شد. ویژگی‌های مختلف خاک اندازه‌گیری شدند. نتایج تجزیه واریانس نشان داد که سامانه­های خاک­ورزی بر ویژگی­های زیستی با شدت­های مختلفی تأثیرگذار بوده است. با تغییر سامانه خاک­ورزی مرسوم به حفاظتی، بیشتر ویژگی­های خاک تغییر مثبتی داشته­ و منجر به بهبود کیفیت خاک گردید. در بین ویژگی­های زیستی، کربن زیست زنده میکروبی به ترتیب با 53/49 و42/45 درصد افزایش، بیشترین تغییر را داشت. در بین ویژگی­های مورد بررسی، ویژگی­های زیستی در مقایسه با ویژگی­های فیزیکی و شیمیایی بیشتر تحت تأثیر سامانه­ های مختلف خاک­ورزی قرار گرفت. شاخص­های کیفیت تجمعی و نِمِرو بیشترین مقدار را به­ترتیب در سامانه بی­خاک­ورزی، کاهشی و مرسوم داشته و شاخص کیفیت تجمعی صحت بیشتری در تعیین کیفیت خاک داشت.

کلیدواژه‌ها

عنوان مقاله [English]

Investigating soil quality indicators in different tillage systems under rapeseed cultivation in Kermanshah province

نویسندگان [English]

  • Amin Haydari 1
  • Ali Beheshti Ale Agha 2
  • Fatemeh Rakhsh 3
  • Hamidreza Chaghazardi 4

1 MSc in Soil Fertility and Biotechnology, Department of Soil Science, Razi University, Kermanshah, Iran.

2 Associate Professor, Department of Soil Science, Razi University, Kermanshah, Iran.

3 Research Assistant, Department of Soil Science, Razi University, Kermanshah, Iran.

4 Assistant Professor, Department of Production Engineering and Plant Genetics, Razi University, Kermanshah, Iran.

چکیده [English]

Tillage is an important component of soil management that affects crop production. In addition, tillage can contribute to agricultural sustainability and improve soil quality by altering the physical, chemical, and biological properties of the soil. One of the most useful tools for assessing soil management status in different tillage systems is soil quality assessment, and the use of quantitative indices is one of the most appropriate methods for determining and comparing soil quality. Therefore, this study was conducted to investigate the effects of different tillage systems on soil quality at two depths of 0-25 and 25-50 cm. The experiment was factorial in a randomized complete block design in the Campus Agriculture and Experimental Natural Resources. The results showed that the tillage system impacted all the studied traits with different intensities. By changing the tillage system from traditional to more conservative, the soil properties had a positive change, which resulted in improved quality. The percentage of increase and the highest variation among the biological characteristics of microbial biomass carbon was 53.49% and 42.45% respectively. Cumulative and developmental indices had the highest values in conservation, reduction, and traditional tillage systems, respectively. Overall, the cumulative quality index was more accurate in determining soil quality.

کلیدواژه‌ها [English]

  • Cumulative quality index
  • Microbial biomass
  • Nomoro quality index
  • Soil degradation
  • Soil protection
  1. امامی، ح.، شرفا، م.، نیشابوری، م. ر.، و لیاقت، ع. 1387. برآورد شاخص کیفیت فیزیکی خاک با استفاده از ویژگی­های زودیافت خاک در تعدادی از خاک­های شور و آهکی. مجله تحقیقات آب و خاک ایران. 39 (1): 46-39.
  2. حبیبی، م.، شیرانی، ح.، کمالی، ا.، و اسفندیارپور بروجنی، ع. 1393. ارزیابی برخی شاخص­های کیفیت فیزیکی خاک با استفاده از سنجش از دور و زمین­آمار در منطقه بافت کرمان. نشریه مدیریت خاک و تولید پایدار. 5 (1): 172-159.
  3. رحیم‌زاده، ر.، و نوید، ح. 1390. اثر روش‌های مختلف خاک‌ورزی بر خواص خاک رسی و عملکرد گندم در تناوب با نخود در شرایط دیم. نشریه دانش کشاورزی و تولید پایدار. 2 (1): 29-41.
  4. شهاب آرخازلو، ح.، امامی، ح.، حق­نیا، غ.، و کریمی کارویه، ع. ر. 1390. مقایسه منحنی توزیع اندازه منافذ خاک اراضی مرتعی با اراضی کشاورزی به­عنوان شاخص کیفیت فیزیکی. دوازدهمین کنگره علوم خاک ایران، ابریز، 12-14 شهریور 90. ص: 4-1.
  5. گرجی، م.، کاکه، ج.، و علی محمدی، ع. ر. 1395. ارزیابی کمی کیفیت خاک در کاربری­های مختلف در بخشی از اراضی جنوب شرق قزوین. تحقیقات آب و خاک ایران. 47 (4): 775-784.
  6. مظاهری، م. 1395. اثر روش‌های مختلف خاک‌ورزی برخصوصیات فیزیکی، شیمیایی و بیولوژیک خاک تحت کشت گندم و نخود در اقلیم‌های متفاوت دیم‌زارهای استان کرمانشاه، پایان نامه کارشناسی ارشد. گروه علوم و مهندسی خاک، پردیس کشاورزی و منابع طبیعی.
  7. Alef, K., and Nannipieri, P. 1995. Methods in applied soil microbiology and biochemistry Academic Press, London, UK.
  8. Anderson, J.P.E. 1982. Soil respiration. In: Page, A.L., Miller, R.H., and Keeney, D.R. (eds.). Methods of soil analysis, Part 2, Chemical and microbiological properties. American Society of Agronomy and Soil Science Society of America, Madison, WI. pp: 831-872.
  9. Anderson, T.H. 2003. Microbial Eco-physiological indicators to assess soil quality. Agriculture, Ecosystems and Environment. 98:285-293.
  10. Babujia, L.C., Hungria, M., Faranchini, J.C., and Brookes, P.C. 2010. Microbial biomass and activity at various soil depths in a Brazilian oxisol after two decades of no-tillage and conventional tillage. Soil Biology and Biochemistry. 42 (12): 2174-2181.
  11. Beare, M.H., Cabrera, M.L., Hendrix, P.F., and Coleman, D.C. 1994. Aggregate-protected and unprotected organic matter pools in conventional and no-tillage soils. Soil Science Society of American Journal. 58: 787–795.
  12. Carter, M.R., Gregorich, E.G., Angers, D.A., Donald, R.G., and Bolinder, M.A. 1998. Organic C and N storage and organic C fractions in adjacent cultivated and forested soils of eastern Canada. Soil and Tillage Research. 47: 253-261.
  13. Chang, S.X., Preston, C.M., and Weetman, G.F. 1995. Soil microbial biomass and microbial and mineralize able N in a clear cut chronosequence on northern Vancouver Island, British Columbia. Canadian. Journal of Forest Research. 25: 1595-1607.
  14. Doran, J.W., and Parkin, T.B. 1994. Defining and assessing soil quality. In: Doran, J.W., Coleman, D.C., Bezdicek, D.F., and Stewart B.A. (eds.). Defining soil quality for a sustainable environment. Soil Science Society of America Special Publication. No. 35, Madison, WI.
  15. Eltiti, A. 2010. Soil Tillage in Agroecosystems. Taylor and Francis, Nature.
  16. Estefan, G., Sommer, R., and Ryan, J. 2013. Methods of soil, plant, and water analysis. A manual for the West Asia and North Africa region. International Center for Agricultural Research in the Dry Areas.
  17. Horwath, W.R., and Paul, E.A. 1994. Microbial biomass. In: Buxton, D.R. (ed.), Methods of soil analysis. Part 2: Microbiological and biochemical properties. SSSA Book Series, No.5. Madison, WI.
  18. Hungria, M., Franchini, J.C., Brandao-Junior, O., Kaschuk, G., and Souza, R.A. 2009. Soil microbial activity and crop sustainability in a long-term experiment with three soil-tillage and two crop-rotation systems. Applied Soil Ecology. 42: 288- 296.
  19. Insam, H., and Domsch, K.H. 1988. Relationship between soil organic carbon and microbial biomass on chronosequences of reclamation sites. Microbial Ecology. 15:177-188.
  20. Jenkinson, D.S., and Ladd, J.N. 1981. Microbial biomass in soil measurement and turnover, In: Paul, E.A., and Ladd, J.N. (eds.). Soil Biochemistry, Marcel Dekker, Inc., NY: 415-471.
  21. Jia, T., Koc, A., and Comakli, B. 2007. Changes in vegetation and soil properties along a slope on overgrazed and eroded rangelands. Journal of Arid Environments. 55: 93-100.
  22. Jin-Ping, J., Xiong, C., Jiang, H., Yede, Y., Song, J., and Feng-Min, L. 2009. Soil microbial activity during secondary vegetation succession in semiarid abandoned lands of loess plateau. Published by Elsevier Limited and Science Press. 19 (6):735–747.
  23. Kaschuk, G., Alberton, O., and Hungria, M. 2010. Three decades of soil microbial biomass studies in Brazilian Ecosystems: lessons learned about soil quality and indications for improving sustainability. Soil Biology and Biochemistry. 42: 1- 13.
  24. Kennedy, A.C., and Papendick, R.I. 1995. Microbial characteristics of soil quality. Soil and Water Conservation Journal. 50: 243-248.
  25. Lal, R., Kimble, J., and Follett, R.F. 1997. Pedosphere processes and the carbon cycle. p. 1–8. In: Lal, R., Blum, C., and Valentine, B.A. (eds.). Stewart. Methods for Assessment of Soil Degradation. CRC Press, Boca Raton.
  26. Manlay Raphael, J., Feller, C., and Swift, M.J. 2007. Historical evolution of soil organic matter concepts and their relationships with the fertility and sustainability of cropping systems. Agriculture, Ecosystems and Environment. 119: 217–233.
  27. McLean, E.O. 1982. Soil pH and lime requirement. Methods of soil analysis. Part 2. Chemical and microbiological properties, (methodsofsoilan2), 199-224. Organic matter, and effects on root growth. Geoderma. 120: 201-214.
  28. Merino, A., Perez-Batallon, P., and Macias Responses, F. 2004. Responses of soil organic matter and greenhouse gas fluxes to soil management and land use changes in a humid temperate region of southern Europe. Soil Biology and Biochemistry. 36: 917-925.
  29. Mukherjee, A., and Lal, R. 2014. Comparison of soil quality index using three methods. PloS one. 9 (8): e105981.
  30. Page, A.L., Miller, R.H., and Keeney, D.R. 1992. Method of Soil Analysis. Part II: Chemical and Mineralogical Properties. 2nd. SSSA, Madison, WI.
  31. Qi, Y., Darilek, J.L., Huang, B., Zhao, Y., Sun, W., and Gu, Z. 2009. Evaluating soil quality indices in an agricultural region of Jiangsu Province, China. Geoderma. 149 (3-4): 325-334.
  32. Rahmanipour, F., Marzaioli, R., Bahrami, H.A., Fereidouni, Z., and Bandarabadi, S.R. 2014. Assessment of soil quality indices in agricultural lands of Qazvin Province, Iran. Ecological Indicators. 40 (2): 19-26.
  33. Raiesi, F. 2007. The conversion of overgrazed pastures to almond orchards and alfalfa cropping systems may favor microbial indicators of soil quality in Central Iran. Agriculture, Ecosystems and Environment. 121: 309-318.
  34. Rasmussen, P.E., and Collins, H.P. 1991. Long-term impacts of tillage, fertilizer, and crop residue on soil organic matter in temperate semi-arid regions. Advances in Agronomy. 45: 93-134.
  35. Richards, L.A. 1954. Diagnosis and improvement of saline and alkali soils. Soil Science. 78(2): 154.
  36. Saffigna, P.G., Powlson, D.S., Brookes, P.C., and Thomas, G.A. 1989. Influence of sorghum residues and tillage on soil organic matter and soil microbial biomass in an Australian Vertisol. Soil Biology and Biochemistry. 21: 759–765.
  37. Schinner, F., Ӧhlinger, R., Kandeler, E., and Margesin, R. 1996. Methods in Soil Biology. Springer Berlin, Heidelberg.
  38. Sombrero, A., and De Benito, A. 2010. Carbon accumulation in soil. Ten-year study of conservation tillage and crop rotation in a semi-arid area of Castile-Leon, Spain. Soil and Tillage Research. 107 (2): 64-70.
  39. Sparling, G.P. 1997. Soil microbial biomas, activity and nutrient cycling as indicators of soil health. In: Pankhurst, C., Doube, B.M., and Gupta, V.V.S.R. (eds.). Biological indicators of soil health. CAB International, Wallingford, pp: 97–119.
  40. Suman, A., Lal, M., Singh, A.K., and Gaur, A. 2006. Microbial biomass turnover in Indian subtropical soils under different sugarcane intercropping systems. Agronomy Journal. 98:698-704.
  41. Walkly, R.H., and Black, I. A. 1934. An examination of digestion method for determining soil organic matter and a proposed modification of the chromic acid titration. Soil Science. 37: 29-38.
  42. Watts, C.W., Eich, S., and Dexter, A.R. 2000. Effects of mechanical energy inputs on soil respiration at the aggregates and field scales. Soil and Tillage Research. 53: 231-243.