تعیین پتانسیل تولید اراضی برای گندم در مناطق گتوند و شوشتر استان خوزستان

نوع مقاله : فنی ترویجی

نویسنده

استادیار پژوهش موسسه تحقیقات خاک و آب.

چکیده

پتانسیل تولید اراضی برای تامین مواد غذایی بشر بخصوص گندم محدود است و بستگی به عوامل محیطی مؤثر بر تولید از قبیل اقلیم، زمین نما، خاک و مدیریت دارد. در این تحقیق به مرور و بررسی این عوامل و ارائه راهکارهایی برای شناخت محدودیت­های[u1] [a2]  این عوامل و نقش آنها بر تولید پرداخته شد. مناطق مورد مطالعه شامل دشت میان آب شوشتر و دشت عقیلی گتوند از استان خوزستان می­باشند. برای تعیین پتانسیل تولید اراضی از مدل رشد فائو و روش ارزیابی تناسب اراضی پارامتری استفاده گردید. نتایج نشان داد که پتانسیل تولید اراضی در منطقه میان آب برای گندم آبی از 933 تا 6023 کیلوگرم در هکتار و برای منطقه گتوند از  2454 تا 6687 کیلوگرم در هکتار متغیر است و کاهش عملکرد بعلت عوامل محدود کننده از قبیل محدودیتهای آهک، زهکشی، شوری و قلیائیت است. پتانسیل تولید اراضی در منطقه میان آب  یا عملکرد  پیش بینی شده گندم آبی در شرایط فعلی با عملکرد مشاهده شده زارع مقایسه گردید و  ضریب همبستگی آنها 0.77 است که این نشان می­دهد مدل تهیه شده با شرایط منطقه تطابق خوبی دارد و همبستگی خوبی بین دو عملکرد وجود دارد. و برای منطقه گتوند نیز  پتانسیل تولید اراضی برای گندم آبی با عملکرد گندم آبی توسط زارع مقایسه گردید  و همبستگی بالایی با ضریب تشخیص 80/0 را نشان داد که دلالت بر این دارد که مدل پیش بینی محصول در هر دو منطقه تطابق خوبی با عملکرد گندم آبی دارد. و نشان دهنده صحت مدل در تخمین عملکرد محصول است. علت عملکرد بیشتر گندم آبی در گتوند نسبت به شوشتر، شوری پایین در منطقه گتوند می­باشد.



 [u1]کلیه اسامی جمع به صورت تفکیک شده نوشته شوند. با رعایت نیم فاصله




 [a2]موارد اصلاح گردید

کلیدواژه‌ها


عنوان مقاله [English]

Determination of land Production Potential for Wheat in Gotvand and Shoustar Areas, Khuzestan Province

نویسنده [English]

  • Alireza Seyedjalali
Assistant professor of Soil and Water Research Institute of Iran Agricultural and Natural Resources Research Center (AREO).
چکیده [English]

Production potential of land for human food, especially wheat supply is limited and depends on environmental factors affecting production, such as climate, soil, landscape, and management. This paper examines these factors and provides guidelines for understanding the limitations of these factors and their role in the production were also investigated. The study area were in Aghili plain of Gotvand and Mianab plain of Shooshtar in Khuzestan. The result showed that land production potential for irrigated wheat in mian ab from 933 to 6023 kg/ha and for Gotvand is 2254 to 6687 kg/ha. The main soil limiting factors in both area were salinity, alkalinity, drainage and calcium carbonate limitations. predicted yield were compared with farmer wheat yield in both areas and showed coefficient factor equal 0.80 for Gotvand and 0.77 for Shoushtar. That means model can predict farmer yield with 80 percent in Gotvand  and 77 percent of accuracy for Shoushtar.The reason of higher wheat yield in Gotvand to shoushtar is because of lower salinity limitations in Gotvand area.

کلیدواژه‌ها [English]

  • Wheat
  • land production potential and land suitability
  1.  وزارت جهاد کشاورزی، 1390. آمارنامه کشاورزی جلد اول محصولات زراعی 89-1388. دفتر آمار و فناوری اطلاعات، معاونت برنامه ریزی و اقتصادی، وزارت جهادکشاورزی. 137 ص.
  2. سیدجلالی،س .ع. 1392. مدل­سازی ارزیابی تناسب اراضی و تخمین پتانسیل تولید اراضی برای گندم آبی با استفاده از نظریه‌ی سامانه های فازی و زمین آمار در دشت گتوند، استان خوزستان. رساله دکتری. دانشگاه تهران. 228 ص.
  3. سیدجلالی ، س.ع.، 1378. ارزیابی تناسب و تعیین مدل پتانسیل تولید اراضی برای گندم در منطقه میان آب شوشتر، استان خوزستان، نشریه فنی شماره 1064، موسسه تحقیقات خاک و آب.

4.            Becker-Reshef A, E. Vermote A,  M. Lindeman and B. C. Justice. 2010. A generalized regression-based model for forecasting winter wheat yields in Kansas and Ukraine using MODIS data. Remote Sensing of Environment 114: 1312–1323.

5.            Budong Q, Reinder De J, and G. Samuel. 2009. Multivariate analysis of water-related agroclimatic factors limiting spring wheat yields on the Canadian prairies. Europ. Journal. Agronomy 30: 140–150

6.            Charles, J., Godfray, J., Beddington, J.R., Crute, I.R., Haddad, L., Lawrence, D., Muir, J.F., Pretty, J., Robinson, S., Thomas, S.M., and C. Toulmin. 2010. Food security: The challenge of feeding 9 billion people. Science (Washington, DC) 327: 812–818.

7.            Chen, Z. X., Ren, J. Q., Zhou, Q. B., and  H. J, Tang. 2008. Regional yield estimation for winter wheat with MODIS-NDVI data in Shandong, China. International Journal of Applied Earth Observation and Geoinformation, 10: 403−413.[u1] 

8.            Chipanshi, A. C., Ripley, E. A., and R. G. Lawford. 1999. Large-scale simulation of wheat yields in a semi-arid environment using a crop-growth model. Agricultural Systems, 59: 57−66.

9.                  Doorenbos, J. and A. H. Kassam. Yield response to water, irrigation and drainage paper 33. FAO, Rome.

10.        Doraiswamy, P. C., Moulin, S., Cook, P. W., and V., Stern. 2003. Crop yield assessment from remote sensing. Photogrammetric Engineering and Remote Sensing, 69: 665−674.

11.   Food and Agricultural Organization. 1979. Report on agro-ecological zones project. Vol.  1: Methodology and result for Africa. World soil resources report No. 48, FAO, Rome.

12.        Keshavarzi, A; Sarmadian, F; Heidari, A and M. Omid. 2010. Land Suitability Evaluation Using Fuzzy Continuous Classification (A Case Study: Ziaran Region). Modern Applied Science. Vol. 4, No. 7.

13.        Khiddir, S. M. 1986. A statistical approach in the use of parametric systems applied to the FAO framework for land evaluation. Ph. D. Thesis, State University of Ghent, Belgium.

14.        Maselli, F., and F. Rembold. 2001. Analysis of GAC NDVI data for cropland identification and yield forecasting in Mediterranean African countries. Photogrammetric Engineering and Remote Sensing, 67: 593−602.

15.        Padilla, F.L.M. ., Maas. S.J., Gonz M.P., lez-Dugo., F. Mansilla, N. Rajan, Gavil, P., and  J. Donguez. 2012. Monitoring regional wheat yield in Southern Spain using the GRAMI model and satellite imagery. Field Crops Research 130: 145–154

16.        Pinter, P. J., Jackson, R. D., Idso, S. B., and R. J. Reginato.1981. Multidate spectral reflectances as predictors of yield in water stressed wheat and barley. International Journal of Remote Sensing, 2: 43−48.

17.        Shahbazi, F., Jafarzadeh, A.A., Sarmadian, F., Neyshaboury, M.R., Oustan, Sh., Anaya- Romero, M. and D. De la Rosa.2009. Suitability of Wheat, Maize, Sugar Beet and Potato Using MicroLEIS DSS Software in Ahar Area, North-West of Iran. American-Eurasian Journal of Agricultural and Environmental suence.5 (1): 45-52,

18.        Storie, R. E. 1978. Storie index soil rating (revised). Spec. publ. Div. Agric. Sci. No. 3203. University of Calif. Berkley, USA.

19.        Sys, C, E, Van Ranst., And J. Debaveye. 1991. Land evaluation, Part I and II. General Admhnstration for development cooperation, Brussels.

20.        Sys, C, E, Van Ranst, and J. Debaveye.1993. Land evaluation, Part III. Crop requirements. General Administration for development cooperation, Brussels.

21.        Toscano, P., Ranieri, R., Matese, A. ., Vaccari, F.P., Gioli , B. A. Zaldeia, M. Silvestri , C. Ronchi,P. La Cava, J.R. Porter and F. Miglietta. 2012. Durum wheat modeling: The Delphi system, 11 years of observations in Italy. Europ. Journal of. Agronomy 43:108–118

22.        Wall, L., Larocque, D., and P. M., Leger. 2007. The early explanatory power of NDVI in crop yield modeling. International Journal of Remote Sensing, 29: 2211−2225.


 [u1]به محل مناسب خود بر اساس حروف الفبا منتقل گردد