برخی روش‌های هسته‌ای اندازه‌گیری رطوبت خاک برای بهبود مدیریت آبیاری

نوع مقاله : ترویجی

نویسندگان

1 پژوهشگر، پژوهشکده کشاورزی هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی ایران

2 استادیار و عضو هیأت علمی، پژوهشکده کشاورزی هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی ایران

3 استادیار پژوهشکده کشاورزی هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای

چکیده

هرگونه سیاست­گذاری در بخش کشاورزی، به عنوان بزرگ­ترین مصرف­کنندۀ آب، باید منجر به افزایش راندمان مصرف و کاهش هدررفت آب گردد. استفاده از فناوری­های نوین مانند فناوری­ هسته­ای کمک شایانی به بهبود مدیریت آبیاری و کاهش هدررفت می­کند. تحقیقات مختلفی نشان داده­اند که با پایش غیرچشمی رطوبت خاک و زیست­توده می­توان زمان و میزان آبیاری را تعیین نمود. سامانه­های هسته­ای مانند کاوشگر نوترونی و حسگر نوترونی اشعه کیهانی با استقرار در مزرعه می­توانند به صورت نقطه­ای و یا شبکه­ای، نوترون­های کُند شده را اندازه­گیری و محتوای رطوبتی خاک را برآورد کنند. با برآورد رطوبت خاک، زمان احتمالی ورود گیاه به تنش رطوبتی تعیین و آبیاری لازم انجام می­شود. این امر منجر به بهبود راندمان جذب آب و افزایش عملکرد محصول خواهد شد. مقالۀ حاضر با توصیف روش­های هسته­ای روز دنیا در زمینۀ پایش غیرچشمی رطوبت خاک، یک بررسی اجمالی در زمینه کاربرد فناوری­های هسته­ای برای بهبود مدیریت آبیاری و روش­های واسنجی ابزارهای هسته­ای ارائه می­کند.

کلیدواژه‌ها


عنوان مقاله [English]

Nuclear Techniques for Soil Moisture Measurement Used to Improve Irrigation Management: An Overview

نویسندگان [English]

  • Mahdi Ghamghami 1
  • Javad Pirvali Beiranvand 2
  • Ebrahim Moghiseh 3
1 Researcher, Agricultural Research School, Nuclear Science and Technology Research Institute, Karaj 31465-1498, Iran
2 Assistant Prof., Agricultural Research School, Nuclear Science and Technology Research Institute, Karaj 31465-1498, Iran
3 Assistant Professor of Soil Science, Nuclear Agriculture School, Nuclear Science and Technology Research Institute.
چکیده [English]

Adopting novel policies in the agricultural sector as the largest consumer of water should undeniably lead to increased water use efficiency and reduced water loss. New technologies including nuclear techniques can be of great help in improving irrigation management through optimized water use efficiency. Study has shown that instrumental monitoring of soil moisture and biomass can be exploited to determine the required irrigation timing and volume. In this regard, such nuclear tools as neutron meter and cosmic ray neutron sensor (CRNS) as novel technologies, installed on farms either in spot installations or in networks, are capable of estimating soil moisture through detecting hydrogen within soil H2O molecules and decelerated neutrons. It has been confirmed that these technologies are beneficially effective in scheduling irrigation by predicting the incidence of imminent moisture stress and, thereby, determining proper irrigation timing, which will evidently enhance both water use efficiency and crop yield. This article provides an overview of the development and application of nuclear and isotopic techniques (NITs) in irrigation management and introduces methods of NITs tool calibration.

کلیدواژه‌ها [English]

  • Nuclear Techniques
  • Cosmic Ray Neutron Sensor
  • Water Use Efficiency
  • Soil Moisture Monitoring
  1. احمدزاده ک. میرلطیفی س م. و دهقانی سانیج ح. 1386. ارزیابی فنی و هیدرولیکی عملکرد یک سیستم آبیاری قطره­ای (مطالعه موردی: منطقه حسن‌آباد شهر ری). مجموعه مقالات سمینار علمی طرح ملی آبیاری تحت‌فشار و توسعه پایدار. 2 اسفندماه 1386 مؤسسه تحقیقات فنی و مهندسی کشاورزی کرج.
  2. برنامه ملی پنج‌ساله ششم توسعه 1396. قابل‌دسترس از سایت اینترنتی https://shenasname.ir/laws/tosee/plan6.
  3. توکلی ا. و عبدالرحمانی ب. 1386. افزایش بهره‌وری آب (WP) و تعیین مقدار و زمان بهینه تک آبیاری برای کلزای بهاره دیم. مجله تحقیقات مهندسی کشاورزی. 8(2): 79-92.
  4. خراسانی ع. موسوی شلمانی م. و پیرولی بیرانوند ن. 1390. مقایسه روش‌های انعکاس سنجی زمانی و ظرفیت سنجی با روش پراکندگی نوترون در اندازه‌گیری رطوبت خاک. مجله علوم و فنون هسته­ای. 3(57): 1-7.
  5. رحمانی ثقیه ج. و قائمی ع. 1392. اثر شوری بر کاربرد حسگرهای هوشمند در تعیین رطوبت خاک. نشریه مدیریت آب و آبیاری. 3(2): 135-146.
  6. عباسعلیان ح. رودپیما م. و بستانی ع. ۱۳9۷. امکان‌سنجی تعیین رطوبت خاک در عمق زراعی به روش کند شدن نوترون‌ها. چهارمین کنفرانس بین‌المللی توسعه پایدار.
  7. عباسعلیان ح. ۱۳۸۷. استفاده از فن‌آوری هسته­ای در ارزیابی راندمان مصرف آب و کود تحت سیستم کود آبیاری قطره‌ای، دهمین کنگره علوم زراعت و اصلاح نباتات، تهران، پردیس ابوریحان دانشگاه تهران، https://www.civilica.com/Paper-NABATAT10-NABATAT10_1110.html
  8. عباسی ف، سهراب ف، و عباسی ن. 1394. راندمان­های آبیاری تغییرات زمانی و مکانی آن در ایران. موسسه تحقیقات فنی و مهندسی کشاورزی. ویراست سوم.
  9. مرکز آمار ایران 1396. تحلیل آمار و اطلاعات منابع آب کشور. سازمان برنامه و بودجه کشور.
  10. Andreasen, M., Jensen, K.H., Desilets, D., Franz, T., Zreda, M., Bogena, H.R., and Looms, M.C. 2017. Status and perspectives of the cosmic-ray neutron method for soil moisture estimation and other environmental science applications. Vadose Zone Journal. 16(8). https://doi.org/10.2136/vzj2017.04.0086
  11. Andreasen, M., Jensen, K.H., Zreda, M., Desilets, D., Bogena, H., Looms, M.C. 2016. Modeling cosmic ray neutron feld measurements. Water Resourse Research. 52:6451
  12. Avery, W.A., Finkenbiner, C., Franz, T.E., Wang, T., Nguy-Robertson, A.L., Suyker, A., Arkebauer, T., Munoz-Arriola, F. 2016. Incorporation of globally available datasets into the roving cosmic ray neutron probe method for estimating feld-scale soil water content. Hydrology and Earth System Sciences. 20:3859.
  13. Baatz, R., Bogena, H.R., Hendricks Franssen, J., Huisman, A., Montzka, C., and Vereecken, H. 2015. An empirical vegetation correction for soil water content quantifcation using cosmic ray probes. Water Resourse Research. 51:2030
  14. Babaeian, I., Modirian, R., Karimian, M., and Zarghami, M. 2015. Simulation of climate change in Iran during 2071–2100 using PRECIS regional climate modelling system. Desert. 20(2):123–134.
  15. Bogena, H.R., Huisman, J.A., Baatz, R., Hendricks Franssen, H.J., and Vereecken, H. 2013. Accuracy of the cosmic-ray soil water content probe in humid forest ecosystems: The worst case scenario. Water Resources Research. 49: 5778–5791. https://doi.org/10.1002/wrcr.20463
  16. Burt, C.M., Howes, D.J., and Mutziger, A. 2001. Evaporation estimates for irrigated agriculture in califonia. Presented at the 2001 Irrigation Association Conference, San Antonia, Texas, Nov. 4-6, 2001.
  17. Desilets, D., Zreda, M., and Ferre, T.P.A. 2010. Nature’s neutron probe: land surface hydrology at an elusive scale with cosmic rays. Water Resourse Research. 56:W11505.
  18. D. and Zreda M. 2013. Footprint diameter for a cosmic ray soil moisture sensor: theory and Monte Carlo simulations. Water Resources Research. 49: 35-66.
  19. Franz, T.E., Wahbi, A., Vreugdehil, M., Weltin, G., Heng, L., Oismueller, M., Strauss, P., Dercon, G., Desilets, D. 2016. Using cosmic ray neutron probes to monitor landscape scale soil water content in mixed land use agricultural ecosystems. Applied and Environmental Soil Sciences. 2016:11
  20. Franz, T.E., Wang, T., Avery, W., Finkenbiner, C., and Brocca, L. 2015. Combined analysis of soil moisture measurements from roving and fxed cosmic ray neutron probes for multiscale real-time monitoring. Geophysic Research Letters. 42:3389
  21. Franz, T.E., Zreda, M., Rosolem, R., Hornbuckle, B.K., Irvin, S.L., Adams, H., Kolb, T.E., Zweck, C., and Shuttleworth, W.J. 2013. Ecosystem-scale measurements of biomass water using cosmic ray neutrons.
    Geophysic Research Letters. 40: 3929–3933.
  22. Ghamghami, M., Ghahreman, N., Irannejad, P., and Pezeshk, H. 2020. A parametric empirical Bayes (PEB) approach for estimating maize progress percentage at field scale. Agricultural and Forest Meteorology. 281 (2020) 107829. https://doi.org/10.1016/j.agrformet.2019.107829
  23. Ghamghami, M., and Irannejad, P. 2019. An analysis of droughts in Iran during 1988-2017. SN Applied Sciences. 1:1217–1221. https://doi.org/10.1007/s42452-019-1258-x
  24. Hawdon A, McJannet D, Wallace J (2014) Calibration and correction procedures for cosmic ray neutron soil moisture probes located across Australia. Water Resourse Research. 50:5029.
  25. Hornbuckle, B., Irvin, S., Franz, T., Rosolem, R., and Zweck, C. 2012. The Potential of The Cosmos Network to be a Source of New Soil Moisture Information for SMOS and SMAP. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012.
  26. IAEA, 2000. Comparison of soil water measurement using the neutron scattering, time domain reflectometry and capacitance methods. ISSN 1011-4289, Vienna, Austria: IAEA.
  27. IAEA, 2001. Use of Isotope and Radiation Methods in Soil and Water Management and Crop Nutrition. IAEA Training Course Series No. 14. Vienna, Austria: IAEA.
  28. IAEA, 2008. Field Estimation of Soil Water Content: A Practical Guide to Methods, Instrumentation and Sensor Technology. ISSN 1018–5518, Vienna, Austria: IAEA.
  29. IAEA, 2020. Modern Neutron Detection Proceedings of a Technical Meeting. ISSN 1011–4289, Vienna, Austria: IAEA.
  30. Jakobi, J., Huisman, J.A., Vereecken, H., Diekkrüger, B., and Bogena, H.R. 2018. Cosmic ray neutron sensing for simultaneous soil water content and biomass quantification in drought conditions. Water Resources Research. 54: 7383–7402. https://doi.org/10.1029/ 2018WR022692
  31. Lawrence, D.M., Thornton, P.E., Oleson, K.W., and Banon, G.B. 2007. The Partitioning of Evapotranspiration into Transpiration, Soil Evaporation, and Canopy Evaporation in a GCM: Impacts on Land–Atmosphere Interaction. Journal of Hydrometeorology. 8: 862-880.
  32. Leib, B.G., Jabro, J.D., and Mtthews, G.R. 2003. Field evaluation and performance comparison of soil moisture sensors. Soil Science. 168: 396-408.
  33. McJannet, D., Franz, T.E., Hawdon, A., Boadle, D., Baker, B., Almeida, A., Silberstein, R., Lambert, T., and Desilets, D. 2014. Field testing of the universal calibration function for determination of soil moisture with cosmic ray neutrons. Water Resourse Research. 50:5235
  34. Nguy-Robertson, A.L., Gitelson, A.A. 2015. Algorithms for estimating green leaf area index in C3 and C4 crops for MODIS, Landsat TM/ETMC, MERIS, Sentinel MSI/OLCI, and Venus sensors. Remote Sensing Letters. 6:1336.
  35. Nguy-Robertson, A.L., Gitelson, A., Peng, Y., Viña, A., Arkebauer, T., Rundquist, D. 2012. Green leaf area index estimation in maize and soybean: combining vegetation indices to achieve maximal sensitivity. Agronomy Journal. 104:360.
  36. Nguyen, M.L., Zapata, F., Lal, R., and Dercon, G. 2011. Role of isotopic and nuclear techniques in sustainable land management: Achieving food security and mitigating impacts of climate change. In: World Soil Resources and Food Security, Advances in Soil Science, Vol. 18; eds. R. Lal, and B.A. Stewart, 345–418, Boca Raton, FL: CRC Press.
  37. Lamm FR, Ayars JE, Nakayama FS (2007) Microirrigation for Crop Production, Sec. 13: Subsurface Drip Irrigation. Elsevier B.V.
  38. Toukiloglou, P. 2007. Comparison of AVHRR, MODIS and VEGETATION for Land Cover Mapping and Drought Monitoring at 1 km Spatial Resolution. Ph.D. Thesis, Cranfield University, Bedford, UK.
  39. Tucker C.J., B.N. Holben, J.H. Elgin, and J.E. McMurtrey. 1981. Remote sensing of total dry-matter accumulation in winter wheat. Remote Sensing of Environment. 11: 171-189.
  40. Vather, T., Everson, C.S., and Franz, T.E. 2020. The Applicability of the Cosmic Ray Neutron Sensor to Simultaneously Monitor Soil Water Content and Biomass in an Acacia mearnsii Forest. Hydrology. 7, 48, doi:10.3390/hydrology7030048
  41. Wahbi, A., Heng, L., and Dercon, G. 2018. Cosmic Ray Neutron Sensing: Estimation of Agricultural Crop Biomass Water Equivalent. Springer International Publishing. https://doi.org/10.1007/978-3-319-69539-6
  42. Zhang, Y., Shi, P., Song, J., and Li, Q. 2019. Application of Nitrogen and Oxygen Isotopes for Source and Fate Identification of Nitrate Pollution in Surface Water: A Review. Applied Science. 9(18): 2-17. doi:10.3390/app9010018
  43. Zreda, M., Schuttleworth, W.J., Zeng, X., Zweck, C., Desilets, D., Franz, T., Rosolem, R. 2012. COSMOS: the cosmic ray soil moisture observing system. Hydrology and Earth System Sciences. 16:4079.